
USENIX Security ’25 Artifact Appendix: Big Help or Big Brother?
Auditing Tracking, Profiling, and Personalization in

Generative AI Assistants

Yash Vekaria
UC Davis

Aurelio Loris Canino
UNIRC

Jonathan Levitsky
UC Davis

Alex Ciechonski
UCL

Patricia Callejo
UC3M

Anna Maria Mandalari
UCL

Zubair Shafiq
UC Davis

A Artifact Appendix

A.1 Abstract
This artifact provides a framework for capturing and ana-
lyzing the network traffic generated while auditing Genera-
tive AI (GenAI) browser assistants. It is designed to assess
the tracking, profiling, and personalization in Generative AI
(GenAI) browser assistants. These assistants, implemented as
browser extensions, offer functionalities such as search-based
integration, querying, and page summarization. Leveraging
powerful large language models (LLMs), they can access and
process a wide range of user data in their browser. We use
a MITM-based infrastructure to record network traffic in the
form of ‘.flow’ files and then a parser for further analysis of
data collection and sharing practices of these assistants.

A.2 Description & Requirements
Our framework comprises capturing and analyzing the net-
work traffic behaviour when using a GenAI extension. The
artifact repository consists of the following components:

• Flows/: Directory contains the network traffic captured
via Mitmproxy in the form of .flow files, generated
while interacting with GenAI browser extensions. This
directory is located in the current working directory and
contains sub-directories labeled with extension name
being tested (e.g., Merlin).

• Output/: Directory contains CSV files generated by pro-
cessing the captured .flow files. Sample CSV files for
different extensions generated during the experiments
are available in the OSF repository.

• parse_flows_to_csvs.py: Python script that parses
.flow files into summarized CSV files, extracting key
details about relevant flows. This includes timestamp, re-
quest domain, payload, response type, cookies, domain’s

parent organization and disconnect list based tracker’s
category (see Section A.2.5).

• generate_entity_domain_mapping.py: Python script
that parses individual entity-domain mapping files for
each domain from DuckDuckGo’s tracker-radar reposi-
tory and generates a consolidated ddg.json.

• disconnect.json: Disconnect’s tracking protection list
used to map domains to predefined tracker categories
such as Advertising, Analytics, and Social.

• ddg.json: DuckDuckGo’s entity-domain list maps
the domains to corresponding parent organiza-
tions. ddg.json is an aggregated single file gen-
erated by parsing individual mapping files using
generate_entity_domain_mapping.py.

• requirements.txt: Lists Python package dependencies
required to run the analysis pipeline.

• README.md: Detailed instructions for setting up
Mitmproxy, configuring it in Google Chrome, captur-
ing network traffic, and executing the analysis pipeline.

A.2.1 Security, privacy, and ethical concerns

This artifact involves intercepting HTTPS traffic using a cus-
tom root Mitmproxy certificate. Some risk considerations are
as follows:

• All HTTPS traffic from the configured browser instance
may be logged in a decrypted form by Mitmproxy.

• Evaluators must be careful in choosing what type of
online personal or private spaces they login to. This is
because in presence of GenAI assistants, user’s sensitive
information can be potentially extracted and shared with
assistant’s server or LLM model’s server.

• It is recommended to use a fresh Chrome profile and
remove the Mitmproxy certificate after experiments.



For more information on ethical considerations, we encourage
to read the corresponding section in the main paper.

A.2.2 How to access

The artifact can be accessed via Zenodo at the following
link: https://doi.org/10.5281/zenodo.15530229. Ad-
ditionally, code is also hosted on GitHub repository: https:
//github.com/Yash-Vekaria/genai-assistants/.

A.2.3 Hardware dependencies

No specialized hardware is required; the artifact can be run
on standard consumer machines such as a laptop or a desktop.

A.2.4 Software dependencies

The artifact is compatible with any operating system such
as Windows, Linux, and macOS. It requires Python 3.8+,
mitmproxy for traffic interception, and relevant Python pack-
ages as listed in requirements.txt. Detailed setup instruc-
tions are provided in the README file.

A.2.5 Benchmarks

We use two external resources in our framework:
• Disconnect List: allows categorizing tracking domains
into one of the 11 categories such as Advertising, Analyt-
ics, and Social. It is available at https://github.com/
disconnectme/disconnect-tracking-protection/
blob/master/services.json.
• DuckDuckGo’s Entity-Domain Mapping: allows map-
ping a domain to its parent organization or owner. It
is openly available at https://github.com/duckduckgo/
tracker-radar/tree/main/domains/US.

A.3 Set-up
The steps listed here allow setting up the necessary environ-
ment for evaluating the artifact.

A.3.1 Installation

❶ MITM Proxy Installation: Primarily, install mitmproxy
following the official guide at (https://mitmproxy.org/).
❷ Instantiate Chrome Profile: Create a new Google Chrome
profile and configure it to route its traffic through the
mitmproxy server linked to (localhost:8080). First, visit
chrome://version/ in your Google Chrome browser to fig-
ure out path to Chrome executable and/or user data directory.
Open Chrome via CLI by specifying a custom user directory.
❸ Install MITM Certificate: Now, in the instatiated browser,
install the mitmproxy root certificate by visiting mitm.it in
the configured browser and following the prompts to add it
to the system’s trusted authorities. This step is required only
once and ensures that HTTPS traffic can be intercepted.

❹ Validation: Once the browser has been configured with
mitmproxy, validate it by launching the configured Chrome
profile, and confirming that intercepted traffic is saved in a
.flow file.
❺ Install Python Dependencies: For the analysis phase,
set up a Python virtual environment and install the required
Python dependencies.
❻ Download Benchmarks: For disconnect list, down-
load services.json from here: https://github.com/
disconnectme/disconnect-tracking-protection/
blob/master/services.json, place the downloaded
file inside the current working directory, and rename it
to disconnect.json. For generating DuckDuckGo’s
mapping, run generate_entity_domain_mapping.py and
then place the generated ddg.json in the current working
directory.

A.3.2 Basic Test

A basic functionality check can be performed to verify the ar-
tifact is operational. For the sake of this test, we will consider
the browser extension Merlin. Execute the following steps:

First, start mitmweb in one terminal and instantiate a fresh
or unused chrome profile in the second parallel terminal win-
dow. Once the Chrome browser opens, install the GenAI
browser extension (in this case Merlin) from the Chrome
Web Store. Next, login to the extension and pin it to your
browser. Next, perform three interactions: search, browse,
and summarize. For search, ask a question in Google search
and let Merlin auto-generate the response in side space on the
right. In case, it does not, but provides an option to generate,
click on that option in the side space. Alternatively, extension
icon can be clicked to ask a question. For browse scenario,
visit any webpage and ask a question about the page to the
Merlin by clicking on the extension icon. Lastly, for summa-
rize, the same webpage can be summarized using one of the
extension-provided options. Now close the browser window,
and terminate the processes in both the terminal windows.

The successful capture of network traffic can be confirmed
by verifying the creation of the .flow file in the working
directory. The analysis script: parse_flows_to_csvs.py
can be now run on the captured .flow file to generate a
summary CSV of the network traffic in the Output folder.
This can be used to verify different claims in our paper such as:
“Merlin can be seen contacting google-analytics.com and
sharing user’s query prompt to this domain in the payload.”

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We visit personal as well as private spaces online in
presence of GenAI browser assistant and observe the
assistant to collect varying granularity of data such as
page’s textual content, partial content, form fields, and

https://doi.org/10.5281/zenodo.15530229
https://github.com/Yash-Vekaria/genai-assistants/
https://github.com/Yash-Vekaria/genai-assistants/
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json
https://github.com/duckduckgo/tracker-radar/tree/main/domains/US
https://github.com/duckduckgo/tracker-radar/tree/main/domains/US
https://mitmproxy.org/
chrome://version/
mitm.it
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/services.json


whole DOM depending on the extension as depicted in
Table 2. This is demonstrated by experiment (E1) and
discussed in Section 5.3 of the paper.

(C2): An audit of sharing of collected information with first-
as well as third-parties is measured for different user-,
chat-, and browser-specific identifiers as shown in Ta-
ble 3 and Figure 3. Sider and Merlin share chat iden-
tifiers with google-analytics.com while Tina-
Mind shares it with analytics.google.com. Mer-
lin also shares user’s raw query prompts with Google
Analytics. MaxAI and Harpa also send data to Mixpanel.
This can be manually verified with the help of experiment
(E2) and is discussed in Section 5.3 of the paper.

(C3): We show that some GenAI assistants profile and per-
sonalize more than others based on five user attributes:
location, age, gender, income, and interests. More specif-
ically, two extensions (Monica and Sider) profile and
personalize in-context as well as out-of-context based
on all five user attributes. In contrast, Perplexity and
TinaMind showed no strong evidence of profiling or per-
sonalization, while Harpa exhibited only in-context per-
sonalization behavior. The results in Table 4 can be
reproduced by performing experiment (E2) as discussed
in Section 5.4 of the paper.

A.4.2 Experiments

Our auditing framework is semi-automated, with the data
collection infrastructure being automated but the experiments
being manual.

(E1): Auditing User Tracking (Data Collection) in GenAI
Assistants [30 human-mins. for experimentation + 15
human-mins. for manual analysis per extension]:
Preparation: To reproduce results in Table 2, read Sec-
tion 5.3 and refer to prompts in Table 6. Since the ex-
periments were performed and analyzed manually, the
evaluators can limit the evaluation to at most 20 sce-
narios, comprising of public as well as private spaces
described in Table 2. Create fresh accounts for each of
the 10 private spaces (wherever possible). Ensure that
the crawling infrastructure is set-up and validated as
explained in Section A.3 and account for the assistant
being tested is pre-created. In ChatGPT for Google, it
also needs to be linked to a chatgpt.com account.
Execution: To test the selected extension, for each
space, follow Section A.3.2 to start mitmweb in one ter-
minal window and initiate a new browser profile in the
second terminal. Within the browser instance, install
the extension, pin it, and login to extension. Now, visit
the space being tested and open some sensitive or copy-
righted content to understand collection practices of the
assistant. If it’s a private space, first authenticate into
the website and then navigate to an appropriate content

page to test for. Refer to Table 6 row corresponding to
the selected space and ask those prompts in the sidebar
chat of the assistant one after the other. Once the testing
completes, close the browser instance and stop the data
collection to save the .flow file.
Results: Manually analyze the flow file of each or a
sample of evaluated spaces to validate the observed data
sharing with respect to the results displayed in the Table
2 for the tested extension.

(E2): Auditing User Tracking (Data Sharing), Profiling, and
Personalization in GenAI Assistants [30 human-mins. for
experimentation + 15 human-mins. for manual analysis
per extension]:
Preparation: Similar to E1, we manually perform three
scenarios for each extension – search, browse, and sum-
marize. Read Section 5.4 to understand how to per-
form experiments for each scenario using fresh accounts
(wherever possible). If reusing the same account (e.g.,
Google account), ensure all data is deleted between sub-
sequent tests and that each test is carried out in a fresh
browser profile.
Execution: For each scenario per extension, use a dis-
tinct browser profile and start mitmweb and instance of
the browser from two separate terminal windows, fol-
lowed by installing the extension and performing the
login. Next, perform each experimental scenario as per
Section 5.4 of our paper using the prompts listed in Sec-
tion 8.1. Table 5 (Section 8.3) lists the webpages to visit
during the browse and summarize scenarios. After ex-
perimenting all scenarios of an extension, generate a
summarized .csv file.
Results: The generated .csv file can be used to com-
pare the data sharing practices of the assistant with the
first- and third-parties by analyzing payload, request
URL, and cookies against Table 3. Likewise, third-party
sharing flows in Figure 3 can also be easily verified. Pro-
filing and personalization of the selected assistant across
the three scenarios can be validated against Table 4 by
analyzing the responses returned by the assistant while
performing experiments.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

google-analytics.com
analytics.google.com
chatgpt.com
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


