ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security *25 Artifact Appendix: Cloak, Honey, Trap:
Proactive Defenses Against LLM Agents

Daniel Ayzenshteyn
Ben-Gurion University, Israel

A Artifact Appendix
A.1 Abstract

The CHeaT artifact accompanies our paper Cloak, Honey,
Trap: Proactive Defenses Against LLM Agents. It provides:

¢ The open-source CHeaT CLI for embedding deceptive
payloads into text assets.

* Datasets compatible with PurpleLlama for reproduc-
ing Table 2, Fig. 3, and Fig. 4, as well as the addi-
tional dataset dataset_unicode_honeytokens. json
used specifically for Fig. 2.

* An evaluation corpus of 11 CTF VMs used for the end-
to-end experiments described in Section 6.2 (Table 3).

¢ Token-landmine utilities (token-landmines/) that
scan entire vocabularies for rare tokens, trigger hallu-
cinations, and evaluate outputs via GPT-4o.

* An interactive playground notebook to load saved Pen-
testGPT snapshots, inject new hints/traps, and observe
the agent’s live reasoning and command stream.

The complete package (~45 GB) is archived on Zenodo
(record #15601740) with source mirrored on GitHub.

A.2 Description & Requirements

To reproduce the results from the paper, you will need to use
the provided artifact hosted on Zenodo (https://zenodo.
org/records/15601740), with source mirrored on GitHub.
The artifact includes the complete source code, datasets, and
additional evaluation assets necessary to reproduce all experi-
ments described in our paper.

In this artifact, you will find detailed instructions for in-
stallation, setup, and usage of the provided tools and datasets.
Specifically, the artifact comprises the CHeaT CLI tool, eval-
uation datasets compatible with the PurpleLlama framework,
the Unicode honeytoken dataset used for Figure 2, token-
landmine utilities, and a Jupyter playground notebook for
interactive exploration and experimentation with saved Pen-
testGPT snapshots.

*Corresponding Author

Roy Weiss
Ben-Gurion University, Israel

Yisroel Mirsky”
Ben-Gurion University, Israel

The provided evaluation datasets are ready-to-use and cor-
respond exactly to the experiments described in Sections 6.1
and 6.2 of the paper. If you plan to extend this work to evaluate
different LLM-based penetration testing agents or experiment
with novel payloads, you may need to adjust or regenerate
datasets using the methodology described in the paper’s ex-
perimental sections and the provided CHeaT CLI tool.

The provided token-landmine utilities were designed
specifically for scanning LLM vocabularies, triggering hallu-
cinations, and assessing outputs using GPT-4o. If your exper-
iments involve different LLM architectures or vocabularies,
you should rerun these utilities accordingly.

Lastly, while the artifact includes ready-to-run vulnerable
CTF VMs, we recommend conducting all experiments strictly
within these isolated environments to ensure safety and ethical
compliance as detailed in the paper’s ethics considerations
(Section 9).

A.2.1 Security, privacy, and ethical considerations

All experiments are safe to run on a local machine. How-
ever, any evaluation involving autonomous penetration test-
ing agents such as PentestGPT must be conducted strictly
within the included CTF virtual machines and never against
real systems. As detailed in the paper’s ethics section, all
techniques are purely defensive and designed to mislead mali-
cious agents. The CHeaT tool makes no system-wide changes,
operates only on local files, and is fully reversible. The “token-
landmine” findings were responsibly disclosed to affected
vendors prior to publication and are shared privately with
reviewers during the embargo period. Under these constraints,
the artifact poses no risk to external systems or user privacy.

A.2.2 How to access

e Stable archive: https://zenodo.org/record/
15601740
* Source repository: https://github.com/

Daniel-Ayz/CHeaT

* Private token-landmine evaluation (review-only):
https://drive.google.com/drive/folders/
1YTWdDrkrpaofoH9bAorxN_kROyQmmPgv

https://zenodo.org/records/15601740
https://zenodo.org/records/15601740
https://zenodo.org/record/15601740
https://zenodo.org/record/15601740
https://github.com/Daniel-Ayz/CHeaT
https://github.com/Daniel-Ayz/CHeaT
https://drive.google.com/drive/folders/1YTWdDrkrpaofoH9bAorxN_kR0yQmmPgv
https://drive.google.com/drive/folders/1YTWdDrkrpaofoH9bAorxN_kR0yQmmPgv

Includes landmine token detection and judgment scripts.
This material will be made public after the embargo
period (see Section A.2.1).

A.2.3 Hardware dependencies

Most experiments rely on querying LLMs via API and can
be run on any standard workstation. Running the CTF virtual
machines requires a desktop with basic virtualization support
(VT-x/AMD-V) and approximately SOGB of free disk space.
For token-landmine detection, local inference depends on the
chosen model; our evaluation used an RTX-6000 GPU (24GB
VRAM), which sufficed for quantized 70B models. Larger
models may require more powerful hardware.

A.2.4 Software dependencies

The CHeaT tool and evaluation scripts require Python 3.9
or later. Dataset-based evaluations rely on the PurpleLlama
framework, which should be installed according to its official
documentation. Running the CTF virtual machines requires
VirtualBox (version 7.0 or higher). To evaluate commercial
LLMs such as GPT-40, an API key (e.g., OpenAl or vendor-
specific) is required.

A.2.5 Benchmarks

Datasets are located under datasets/ for usage with purple
Ilama as documented.

A.3 Set-up
A.3.1 Installation

To install the CHeaT tool, clone the repository (https:
//github.com/Daniel-Ayz/CHeaT) and follow the instruc-
tions in the “Tool Quick Start” section of the main README . md.
For dataset-based evaluation, install PurpleLlama by follow-
ing these steps:

1. Clone the PurpleLlama Repository
git clone https://github.com/
meta-llama/Purplellama.git

2. Navigate to the Project and Set Up a Virtual Environ-
ment
cd PurpleLllama
python3 -m venv .venv &&
source .venv/bin/activate

3. Install Python Dependencies

pip3 install -r
CybersecurityBenchmarks/requirements.txt

4. Set the Dataset Path

export DATASETS=$PWD/
CybersecurityBenchmarks/datasets

You can place our dataset files under a subdirectory such
as:
SDATASETS/CHeaT/dataset_main. json

To run the CTF machines used for end-to-end testing, use
the “Import Appliance” option in the VirtualBox GUI to load
each .ova image and then start the machines.

A.3.2 Basic Test

CHeaT Tool Test: To verify the CHeaT tool is installed cor-
rectly, run this basic test from the Tool Quick Start section:

1. Clone the repository and enter the tool folder:

git clone https://github.com/Daniel-Ayz/
CHeaT.git
cd CHeaT

2. Create and activate a virtual environment (optional):

python3 -m venv .venv && source
.venv/bin/activate

3. Install the tool:
pip install -e .

4. Plant a random defense in a test HTML file:

echo "<html><body>Hello</body></html>" >
./test.html

cheat -action plant -details '{
"assettype": "web_file",
"file_path": "./test.html",
"technique": "random"

r }I
5. Verify the installation by listing installed payloads:
cheat -action list -type installed

PurpleLlama Dataset Evaluation Test: For dataset-
based evaluations using PurpleLlama, follow the in-
stallation instructions provided and refer to the docu-
mentation in the datasets/ directory of the CHeaT
repository for specific evaluation procedures with
dataset_main.json, dataset_boosted_with_pi.json,
and dataset_unicode_honeytokens. json.

CTF Virtual Machine Test: To verify the CTF machines
are working correctly:

1. Download the VM files from the Zenodo dataset:
https://zenodo.org/records/15601740

https://github.com/Daniel-Ayz/CHeaT
https://github.com/Daniel-Ayz/CHeaT

2. Import a CTF machine (e.g., UbuntuX.ova) using Virtu-
alBox’s "Import Appliance" option

3. Start the virtual machine and verify it boots successfully

4. Test network connectivity to confirm the machine is
ready for evaluation

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our payload techniques achieve a Defense
Success Rate (DSR) of 55-67% across all
evaluated LLMs. This is supported by Sec-
tion 6.1 of the paper, using the PurpleLlama-
compatible datasets (dataset_main.json and
dataset_boosted_with_pi.json). Results are
shown in Table 2 and Figures 3 and 4.

(C2): A defended version of the CTF machines achieves
100% DSR against PentestGPT when using CHeaT to
insert the top 10 technique—datapoint combinations. This
is demonstrated by the experiments in Section 6.2 and
shown in Table 3.

(C3): There exist Unicode characters that allow honey-
tokens to distinguish between human and LLM ac-
cess, based on mismatches in rendering and inter-
pretation. This is supported by evaluations using
dataset_unicode_honeytokens. json and illustrated
in Figure 2.

(C4): Some rare tokens cause LLMs to produce hallucina-
tions or gibberish when injected. This behavior is iden-
tified and measured in our token-landmine study and
summarized in Table 11.

A.4.2 Experiments

(E1): Dataset Evaluation with PurpleLlama [5
human-minutes + 10 compute-minutes]:
Evaluates dataset_main. json and
dataset_boosted_with_pi. json using PurpleLlama
to reproduce defense success rates (C1). For detailed
instructions, please follow the readme under the
datasets folder.

Preparation: Install PurpleLlama and copy the datasets
from datasets/ into its data/ folder.

Execution: Run the prompt-injection benchmark
script with the selected dataset and model. Enable
-run-llm-in-parallel for faster evaluation.

Results: PurpleLlama will generate a summary file re-
porting Defense Success Rate (DSR) by category, as
shown in Figures 3—4 and Table 2.

(E2): Unicode Honeytoken Evaluation
minutes + 2 compute-minutes]:

[2 human-
Evaluates

dataset_unicode_honeytokens.json using Pur-
pleLlama to confirm the behavior difference between
human- and LLM-visible tokens (C3).

Preparation: Same setup as in E1. Copy the Unicode
dataset into PurpleLlama’s data/ folder.

Execution: Run PurpleLlama’s benchmark on the
dataset using a target LLM (e.g., GPT-40).

Results: Inspect the model’s responses to see whether
the password was misinterpreted. Results are summa-
rized in Figure 2.

(E3): Token Landmine Evaluation [5 human-
minutes + variable compute-time]: Identi-
fies hallucination-triggering tokens (C4) us-
ing the detect_landmine_tokens.py and
judge_landmines.py scripts (in token-landmines/).
Runtime depends on model size and number of tokens
scanned.

Preparation: Follow the usage instructions in the
token-landmines/ README.md. Ensure the GPU is
available for large model scans.

Execution: Run the detection script on the chosen
model, then label the responses using the judgment script
with an OpenAl API key.

Results: The final JSON includes a judgment label
("Yes"/"No") per token. Results are summarized in Ta-
ble 11.

(E4): CTF Machine Evaluation with PentestGPT [1+ human-
hours per trial]: Reproduces full agent-based trials with
and without defenses to validate the real-world effective-
ness of CHeaT (C2).

Preparation: Import the CTF virtual machines into Vir-

tualBox and launch one. Prepare the environment for

PentestGPT execution with API access.

Execution: ¢ Step 1: Run PentestGPT on the unmod-
ified CTF machine and solve it using the agent’s
instructions.

» Step 2: Use CHeaT to insert defenses (e.g., top
10x10 entries) into the same machine.

» Step 3: Repeat the process with PentestGPT and
observe whether it is blocked or misled.
Results: Compare the actions and success rate of Pen-
testGPT between the unmodified and defended versions.
Results should match Table 3 (100% DSR).

A.5 Notes on Reusability

The provided CTF machines can serve as a reusable testbed
for evaluating future LLM-powered penetration testing agents
or novel defense techniques. The datasets and payloads in-
cluded in the repository offer a way to benchmark whether
next-generation agents or models remain vulnerable to the
same classes of traps. Additionally, the CHeaT tool is modular
and can be easily extended to insert custom payloads, sup-
port additional asset types, or implement more sophisticated

deception strategies.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical considerations
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

