ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security ’25 Artifact Appendix: Scoop: Mitigation of Recapture
Attacks on Provenance-Based Media Authentication

Yuxin (Myles) Liu Habiba Farrukh
University of California, Irvine University of California, Irvine
Ardalan Amiri Sani Sharad Agarwal Gene Tsudik
University of California, Irvine Microsoft University of California, Irvine

A Artifact Appendix

A.1 Abstract

Continuous advances in photo and video manipulation yield
increasingly sophisticated deepfakes that greatly endanger
societal perception of reality. Deepfake detection is an intu-
itive and natural research direction, which is unfortunately
shaping up to be a never-ending arms race. An alternative
promising direction is provenance assertion, which blends
hardware-based secure camera design with the cryptographic
means of authenticating the source of visual content and any
post-processing (e.g., filters) applied to it.

This work starts by highlighting a very effective attack
type, called a recapture attack, against all provenance-based
techniques. In such an attack, the adversary displays fake
content on some form of a screen (e.g., TV, projector, or com-
puter screen) or surface (e.g., cardboard, canvas, or paper) and
uses a provenance-asserting secure camera device to capture
photos and videos of the displayed content.

We then introduce Scoop,' a systematic solution for mit-
igating recapture attacks. Scoop leverages state-of-the-art
depth sensing technologies as well as learning-based depth
estimation to detect misleading recaptures, i.e., a recaptured
photo or video where the presence of a display medium is not
visually identifiable.

We implement Scoop on both iOS and Android platforms
(Apple iPhone 14 Pro and Samsung Galaxy S20 Plus), using
their built-in depth sensors. To evaluate the effectiveness of
Scoop, we construct a first-of-its-kind dataset consisting of
78 recapture attack scenarios. Our results show that Scoop
achieves as high as ~ 95% accuracy on the iPhone and 74%
accuracy on the Samsung phone.

A.2 Description & Requirements
There are four artifact components in our paper.

* Viewer: The Scoop Viewer is the main tool that we de-
veloped to detect the existence of misleading recaptures

I'Scoop: Secure Content Origin from Optical Properties

in photos/videos.

* i0S App: The iOS App is a mobile application that can
be used to capture photos/videos that can be analyzed
by the Scoop Viewer.

* Android App: The Android App is a mobile application
that can be used to capture photos/videos that can be
analyzed by the Scoop Viewer.

» Dataset: The dataset that can be used to evaluate systems
such as Scoop.

A.2.1 Security, privacy, and ethical concerns

This artifact should not pose any threat to the evaluators ma-
chines’ security, data privacy, or other ethical concerns. How-
ever, we recommend the use of VM when evaluating our
artifact, which can help avoid any potential pollution on eval-
uators machines’ environment.

A.2.2 How to access

All parts of our artifact can be found on our Zenodo page at
https://doi.org/10.5281/zenodo.15611904. Each part
contains a detailed README on its usage.

A.2.3 Hardware dependencies

Depending on different part of the artifact and different ways
to evaluate it, various hardware might become necessary, such
as a powerful GPU, a LiDAR-equipped iPhone, and an An-
droid phone equipped with ToF sensor. As mentioned above,
details can be found in each part’s README.

A.2.4 Software dependencies

Depending on different part of the artifact and different ways
to evaluate it, various software might become necessary, such
as OpenCV, PCL, CUDA, and so on. As mentioned above,
details can be found in each part’s README.

https://doi.org/10.5281/zenodo.15611904

A.2.5 Benchmarks

None. Although performance and storage overhead can be
evaluated, they are not our main focus in the paper.

A.3 Set-up

There are three ways to test the Scoop system, we will only
talk about one of them, which performs a quick overall test
of our system, without the need of any special hardware. The
other two ways to test our system can be found at subsection
A.5 and A.6, where their detailed workflow can be found in
the README:s of our artifact.

We now provide a quick way to test out the Scoop sys-
tem. Please download the Scoop Viewer (viewer.zip), which
contains everything needed to conduct a quick test of Scoop.

A.3.1 Installation
The Scoop Viewer requires the following dependencies:
e C++ compiler (e.g., g++, clang++)

e CMake 3.5 or later

OpenCV 4.5 or later

PCL (Point Cloud Library) 1.12 or later
* Boost 1.75 or later

* Eigen 3.3 or later

* Python 3.9 or later

You may set up the dependencies yourself and modify the
CMakelLists.txt file accordingly, or you can use our provided
script to set up the environment automatically. Our script
is tested on Ubuntu 24.04 LTS, but it should work on other
Linux distributions (e.g., Fedora, Arch Linux) and MacOS
(with Homebrew) as well. Assuming the viewer is now at
a directory called $VIEWER_DIR, you can run the following
commands to set up the environment:

cd $SVIEWER_DIR
bash ./scripts/install_required_libraries.sh
A.3.2 Basic Test

After the installation is complete, you can run the following
commands to build the Scoop Viewer:

cd SVIEWER_DIR
cmake .
make -j$ (nproc)

After the build is complete, you can run the quick test with
the following command:

cd SVIEWER_DIR
python3 ./scripts/eval.py sample_data/ 0000 9999

This command will run the Scoop Viewer on the sample data
in the sample_data directory, which contains 8 sets of data
provided (with 4 unique data points). Among the 4 data points,
1 is original and the rest 3 are recaptured photos (with 2 TVs
and 1 projector).

A.4 Evaluation workflow

They are already mentioned above, and for detailed descrip-
tion or instructions, please refer to our READMEs.

A.4.1 Major Claims

(C1): A first-of-its-kind dataset for evaluating systems such
as Scoop.

(C2): A functional iOS App to capture photos and videos
that can be verified using Scoop’s viewer.

(C3): A functional Android App to capture photos and videos
that can be verified using Scoop’s viewer.

(C4): A viewer that can analyze and detect visual content
that can potentially mislead people into beleiving the
existence of depth.

A.4.2 Experiments

The steps to conduct evaluation are already mentioned above,
and for detailed description or instructions, please refer to our
READMEs.

In terms of the expected duration of the evaluation, we
expect an average time of 2 hours, with the majority time spent
on setting up the environment. In terms of the outcomes of
the experiments, we expect out system to successfully detect
the misleading recapture scenes in the above quick test we
provide. As for evaluation with self-produced data, we expect
them to be detected properly as well in most cases, as long
as the ground truth depth information is captured correctly.
As for evaluation with our dataset, we expect the accuracy to
match with our claims in the paper.

A.5 Test with Your Own Data

You can also test the Scoop Viewer with your own data. To
do this, you can either use our iOS or Android app to capture
photos/videos, or you can use your own camera to capture
photos/videos. However, please make sure you follow the
guidelines in the i0S/Android app repositories for correctly
capturing the data or refer to the Scoop Viewer repository for
the correct format of the data. For building iOS and Android
apps, please refer to the respective repositories for instruc-
tions.

After you have extracted the data from your iOS/Android
app, you need to generate perceived depth data for each

photo/video. Please refer to the Scoop Viewer repository for
instructions on how to generate perceived depth data. You can
pick any depth estimation model that you prefer, but we rec-
ommend using the ml-depth-pro model, which we included a
script for using it in the Scoop Viewer repository. You may
need to refer to the script to see how to generate the perceived
depth data for your photos/videos and make sure the gener-
ated data is in the correct format so that the Scoop Viewer
can analyze it. After you have generated the perceived depth
data, you can run the Scoop Viewer on your data with the
commands provided in the Scoop Viewer repository.

A.6 Test with the Dataset

You can also test the Scoop Viewer with our dataset. We
provide full instructions on how to use the dataset in the
Scoop Viewer repository. You can also refer to the Scoop
dataset repository for more information about the dataset.

A.7 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Test with Your Own Data
	Test with the Dataset
	Version

