
USENIX Security ’25 Artifact Appendix:
TRex: Practical Type Reconstruction for Binary Code

Jay Bosamiya1, Maverick Woo2, and Bryan Parno2

1Microsoft Research
2Carnegie Mellon University

A Artifact Appendix

A.1 Abstract
In the paper, we present TRex, a tool that performs automated
deductive type reconstruction, using a new perspective that ac-
counts for the inherent impossibility of recovering lost source
types. Compared with Ghidra, a state-of-the-art decompiler
used by practitioners, TRex shows a noticeable improvement
in the quality of output types on 124 of 125 binaries.

This artifact contains the source code for TRex, scripts for
producing reproducible benchmark binaries, as well as the
scripts needed to run the evaluation presented in §5 of the
main paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact poses no security, privacy, or ethical risks during
execution. The code does not perform any destructive actions,
nor does it disable any existing security mechanisms.

A.2.2 How to access

This artifact includes (i) the source code for TRex, (ii) re-
producible scripts for the benchmarks, and (iii) evaluation
framework to reproduce the results in §5 of the paper.

The artifact is archived at https://doi.org/10.5281/
zenodo.15611994. Within this artifact, the TRex tool it-
self sits within trex/, the benchmark scripts sit within
trex-usenix25/benchmarks/, and the rest of the files in
trex-usenix25/ are the evaluation scripts/framework.

The existence of two top-level folders reflects the
fact that we have two GitHub repositories: https://
github.com/secure-foundations/trex for the tool it-
self, and https://github.com/secure-foundations/
trex-usenix25 for the evaluation and benchmarks. The
artifact contains a symlink from trex-usenix25/trex to
../trex to establish the directory structure expected by our
evaluation framework.

Details of software requirements, instructions, and more
can be found in the top-level READMEs in each of the two
top-level directories, but are also listed below.

A.2.3 Hardware dependencies

No special hardware is needed for running TRex, or indeed
most of the evaluation, and a regular commodity x86-64 sys-
tem suffices. While TRex itself works on ARM-based devices
too, building the benchmark binaries requires an x86-64 ma-
chine. For future reference, we note that we ran our evaluation
on a server with an Intel i9-10980XE (with 36 logical cores)
and 256 GiB of system memory. We stress that the evaluation
can be run using lower hardware specifications at the cost of
a longer run time.

For replicating §5.3 in particular (i.e., evaluation against
the Machine Learning-based prior work called ReSym), we
recommend using a system with sufficiently powerful GPU
(with CUDA support). The ReSym paper itself uses four
A100 GPUs, thus we too used a server with four A100 GPUs.

Note that our evaluation scripts support running the GPU-
intensive part of the computation on another server separate
from the rest of the evaluation, if that is more convenient;
details can be found in the relevant README.

A.2.4 Software dependencies

The evaluation has a small number of software dependencies
that we list in the relevant READMEs. In short, we require
an installation of Rust, Just, Python, uv, rename, and Ghidra.
We have tested the evaluation locally on both Ubuntu 22.04
and 24.04, but recommend using the provided Dockerfile to
ensure that all versions are set up correctly, and that paths and
environment variables are correctly initialized.

A.2.5 Benchmarks

Benchmark binaries for the evaluation consist of COREUTILS
and SPEC. For the former, no special access other than in-
ternet is needed, and the reproducible scripts will automat-
ically download and build the binaries after confirming a

https://doi.org/10.5281/zenodo.15611994
https://doi.org/10.5281/zenodo.15611994
https://github.com/secure-foundations/trex
https://github.com/secure-foundations/trex
https://github.com/secure-foundations/trex-usenix25
https://github.com/secure-foundations/trex-usenix25


cryptographic checksum. For the latter, a license to SPEC
CPU® 2006 is required to obtain the necessary source archive.
Our reproducible scripts will confirm its cryptographic check-
sum and then use it for compiling the benchmark binaries.

A.3 Set-up
A.3.1 Installation

Within trex-usenix25/.docker, simply run ‘make’ (with-
out quotes). This uses podman to build an image, spin up
a container, and drop you into a shell with all dependencies
installed. The artifact itself will be at /trex-usenix25/;
please ensure that the main TRex code is cloned or sym-
linked correctly at /trex-usenix25/trex/ (running ‘just
trex’ within the /trex-usenix25/ directory should cor-
rectly clone this if you don’t have the folder).

For the benchmark binaries (outside the aforementioned
container), run make within the directory of the benchmark
of your choice, within trex-usenix25/benchmarks; this
should automatically build all the benchmarks and place them
into the relevant evalfiles folder.

A.3.2 Basic Test

Our runner system allows interactive configuration of jobs
for a specific benchmark. In addition to COREUTILS and
SPEC as benchmarks, we include a basic-test as an option.
This is the default benchmark interactively. Thus, after spin-
ning up the runner (i.e., executing ‘just runner’ inside
the trex-usenix25/ directory, after installing all dependen-
cies), simply select the defaults for everything (i.e., keep
hitting ←|Enter ) to run the full evaluation on the basic-test
“benchmark”. Note the ‘just runner’ above is a command
consisting of two words separated by a space.

This should finish in a few minutes, even if running only
on a single core (although we recommend using multiple
cores so that the various compilation steps are not slowing
things down too much). Each runner sub-task (starting with
“Confirm basic pre requisites” and finishing with “Summarize
all metrics”) will automatically report back with a success or
failure. All jobs should show up with a checkmark indicating
success. If any jobs fail, the runner gives you commands to
run with more details and figure out what to fix.

The basic test runs all the same jobs as the full evaluation
workflow using a couple of binaries instead of the complete
benchmark. If the basic test succeeds, then the workflow on
the complete benchmarks is expected to succeed.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): TRex qualitatively improves upon the decompilers
used by practitioners (namely, Ghidra, Binary Ninja,

and Hex-Rays / IDA Pro). This is demonstrated by
Experiment E1, described in §5.1 of the paper.

(C2): TRex quantitatively outperforms Ghidra on real-
world benchmarks (namely, COREUTILS and SPEC).
This is demonstrated by Experiment E2, described
in §5.2 of the paper.

(C3): TRex outperforms state-of-the-art Type Prediction
(i.e., machine-learning based technique). This is
demonstrated by Experiment E3, described in §5.3
of the paper.

A.4.2 Experiments

(E1): Qualitative comparison [<10 human-minutes + <10
compute-minutes].
Preparation: Make sure that the basic test de-
scribed in Appendix A.3.2 is successful.
Execution: A quick approximation is to sim-
ply look at the trex-usenix25/benchmarks/
basic-test/evalfiles directory after running
the basic test described in Appendix A.3.2—the easy
and hard linked list binaries and the corresponding
results are named test-linked-list-slot1.*
and test-linked-list-slot2.* respectively.
Specifically, looking at the *.trex-clike and
*.trex-st files are similar to Figure 5 of the paper.
However, for presentation purposes in the paper,
we use mildly different CLI flags that improve
readability and understanding. Thus, for a more
direct mapping to the paper, we recommend running
(within the trex-usenix25/trex/trex/ direc-
tory) ‘cargo run -- from-ghidra tests/
test-linked-list-slot2.{lifted,vars}
-Zdisable-type-rounding -Zdisable-
signed-integer-preference’. Run a sim-
ilar command but with slot1 rather than slot2 to
obtain the “easier” variant described in the text. To
obtain the decompiler outputs to compare against,
simply load the relevant binary *.ndbg-bin into
the decompiler to see the produced output types.
To run the ablation described at the end of §5.1 of
the paper, add the -Zdisable-aggregate-type-
analysis argument to the cargo run command
above. To see the expected warning (in the ablation
for slot 1), add -dd to the command.
Results: The produced types at stdout (both struc-
tural and C types) should be virtually identical to
Figure 5 in the paper. Similarly, the alternate “easier”
variant (i.e., slot1) produces the expected types,
and the ablation study produces the types described
in the paper. Note that there may be minor nam-
ing or presentational differences, such as the use of
curly braces for better readability in the paper, or
numbering of types in the automatically-generated



type names—for example, t31 in the paper might
be α-converted to t29 if there are minor differences
in internal numbering, due to (say) debug logs.

(E2): Quantitative comparison [<10 human-minutes + up-
to-overnight compute time].
Preparation: Make sure that the basic test de-
scribed in Appendix A.3.2 is successful. Also,
outside the container, within trex-usenix25/
benchmarks/<benchmark> , run ‘make’ to ensure
that all the .../evalfiles/*.binar.xz (i.e.,
benchmark binaries) are generated (the run time de-
pends on the parallelism afforded by your machine;
while we found it to run on the order of minutes, it
would not hurt to brew a cup of coffee/tea at this
time). These binaries are what will be used by the
runner for the evaluation.
Execution: Within trex-usenix25/, run ‘just
runner’, and select the <benchmark> when inter-
actively prompted. Use the defaults for all other
prompts, unless you explicitly want to change some-
thing (for example, use fewer than max cores). Even
the jobs picked should be left at the defaults (see
Experiment E3 for when the currently-not-selected
ones are activated). At this point, the entire evalua-
tion should run autonomously, and depending on the
amount of parallelism, might finish in under an hour,
or might take overnight. Some jobs (e.g., Ghidra) are
known to be flaky, so the runner will automatically
re-attempt them up to 3 times if it detects they have
failed. Re-executing the runner with same settings
will also re-use cached results for any previously-
successful tasks. Thus, if the runner needs to be
stopped halfway for some reason and then restarted,
not much progress is lost.
Results: All results produced by the runner can
be found in the trex-usenix25/benchmarks/
<benchmark> directory. The std-metrics.csv,
summary.tex, and eval-*.pdf files should match
the results reported in the paper, specifically, Tables
2 and 3, and Figures 7 and 8. For the ReSym row in
the tables, please see Experiment E3.

(E3): Comparison to ML-based technique [<30 human-
minutes + ∼overnight compute time].
Preparation: Make sure to have successfully fin-
ished Experiment E2 first (the summarization scripts
will overwrite previously-generated summary re-
sults; thus it might help to move the existing sum-
mary files to a separate directory for future refer-
ence, before moving on to this experiment). Then
follow the instructions in trex-usenix25/tools/
evaluating_resym/README.md, to set up a GPU-
capable server with ReSym, and pass the correct
environment variables.
Experiment: With the environment variables set

up correctly, the runner will automatically recognize
that it must evaluate ReSym too (i.e., the defaults au-
tomatically update such that the previously-disabled
ReSym jobs get activated). The runner will also
reuse any existing intermediate files from Experi-
ment E2 whenever possible, so as to not waste time
re-computing deterministic results.
Results: The generated summary files in the
.../<benchmark> directory should match the re-
sults reported in the paper (Tables 2 and 3, and Fig-
ures 9 and 10), modulo randomization-induced noise
due to the non-deterministic nature of the machine-
learning based ReSym. Note: the “generous scoring”
results are prefixed with gen in the produced results.

A.5 Notes on Reusability
The TRex tool should be independently reusable, even outside
the evaluation. Instructions for this are provided in the TRex
README. For customizing behaviors (e.g., to toggle the
flags we describe in §3.2 of the paper), see TRex’s --help
output. Additionally, the benchmark scripts, and evaluation
machinery should be usable for future research as-is. Intro-
ducing a new tool for future research to the evaluation scripts
simply involves making sure that the tool can generate files
of the *.<toolname> -st format, and adding a task to the
runner to execute the tool.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


