
USENIX Security ’25 Artifact Appendix: Vest: Verified, Secure,
High-Performance Parsing and Serialization for Rust

Yi Cai†* Pratap Singh‡ Zhengyao Lin‡ Jay Bosamiya¶*

Joshua Gancher§* Milijana Surbatovich† Bryan Parno‡

¶Microsoft Research §Northeastern University ‡Carnegie Mellon University
†University of Maryland, College Park

A Artifact Appendix

A.1 Abstract

Paper: Many software vulnerabilities lurk in parsers and se-
rializers, due to their need to be both high-performance and
conformant with complex binary formats. To categorically
eliminate these vulnerabilities, prior efforts have sought to
deliver provable guarantees for parsing and serialization. Un-
fortunately, security, performance, and usability issues with
these efforts mean that unverified parsers and serializers re-
main the status quo.

Hence, we present Vest, the first framework for high-
performance, formally verified binary parsers and serializers
that combines expressivity and ease of use with state-of-the-
art correctness and security guarantees, including—for the
first time—resistance to basic digital side-channel attacks.
Most developers interact with Vest by defining their binary
format in an expressive, RFC-like DSL. Vest then generates
and automatically verifies high-performance parser and se-
rializer implementations in Rust. This process relies on an
extensible library of verified parser/serializer combinators we
have developed, and that expert developers can use directly.

We evaluate Vest via three case studies: the Bitcoin block
format, TLS 1.3 handshake messages, and the WebAssembly
binary format. We show that Vest has executable performance
on-par (or better) than hand-written, unverified parsers and
serializers, and has orders of magnitude better verification
performance relative to comparable prior work.

Artifact: This artifact contains the complete implementa-
tion of VestLib and VestDSL, as well as a suite of benchmarks
on real-world binary formats including Bitcoin, TLS 1.3, and
WebAssembly.

*Work done in part while at Carnegie Mellon University.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact is packaged as a Docker image, which contains
the source code of VestLib and VestDSL, the dependencies
(e.g., Rust and Verus), and the benchmarks for the three case
studies. The binary data used in the benchmarks is publicly
available and does not contain any sensitive information.

A.2.2 How to access

The artifact is available at:

https://doi.org/10.5281/zenodo.15611103

A.2.3 Hardware dependencies

To properly load the Docker image, we recommend a machine
with at least 8 GB of RAM and 20 GB of disk space.

A.2.4 Software dependencies

While any operating system that supports Docker can be used
to run the artifact, we recommend using a Linux-based OS
(e.g., Ubuntu 20.04 or later) with Docker 27.5.1 or later in-
stalled.

A.2.5 Benchmarks

The artifact includes benchmarks for three real-world binary
formats:

• Bitcoin 1K: 1,000 uniformly sampled blocks (out of
~870,000 blocks at the time of writing) from the Bitcoin
main chain, with about 670 MB of data.

• TLS/Tranco: Handshake traces of TLS connections from
making HTTPS requests the top 100 most visited do-
mains according to the Tranco list [7].

• PolyBenchC [2]: A canonical Wasm benchmark [6] con-
sisting of 30 C programs compiled to Wasm.

https://doi.org/10.5281/zenodo.15611103


All benchmarks are already included in the Docker image,
and can be run with the provided scripts (see subsection A.4).

A.3 Set-up

A.3.1 Installation

Download the Docker image from Zenodo (https://doi.
org/10.5281/zenodo.15611103) and load it using the fol-
lowing command:

docker load -i vest-image.tar.gz

This will create a Docker image named vest.

Note: The image file is create from macOS
with the default BSD tar, so if you are using
Linux, Windows, or Windows WSL, you might
need to first extract the tar.gz with tar -xvzf
vest-image.tar.gz, and then load the image
with docker load -i vest-image.tar.

A.3.2 Basic Test

To start the Docker container, run the following command:

docker run -it --rm vest-image

This will start a new container based on the vest image.

Note: The image is built for the linux/amd64
architecture, so if you are using an Apple
Silicon (M1, M2, M3, etc.) machine, you
might need to run the docker image with
docker run -platform=linux/amd64 -it
-rm vest-image.

From now on, every command should be run inside the
Docker container.

Once inside the container, you can run the following com-
mand to verify that VestLib and VestDSL are correctly in-
stalled, respectively:

cd vest
make
verification results:: 477 verified, 0 errors

This will compile and verify VestLib.

cd vest-dsl
cargo run --release -- --help
Vest: A generator for formally verified
parsers/serializers in Verus

Usage: vest-dsl [OPTIONS] <VEST_FILE>

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Vest delivers runtime performance on-par with (or bet-
ter than) state-of-the-art, hand-written, unverified parsers
and serializers.

(C2): Vest achieves verification performance that is orders
of magnitude better than prior work that also produces
fast and verified parsers and serializers.

A.4.2 Experiments

(E1): [2 human-minutes + 10 compute-minute + 1GB
disk]: This experiment is meant to support the claim
(C1) above.
How to: The benchmark suites for Bitcoin, TLS 1.3,
and WebAssembly are respectively located in the
directories vest-dsl/bitcoin, vest-dsl/tls, and
vest-dsl/wasm. Simply run cargo bench from within
each of these directories to see the runtime performance
comparison between Vest’s parsers/serializers and the
hand-written, unverified parsers/serializers (i.e., Rust Bit-
coin [3], Rustls [4], and wasmparser [5]).
Results: The the Rust Criterion benchmarking li-
brary [1] that is used to run the benchmarks will output
the results in a human-readable format, including the
average time taken by each parser/serializer to process a
single message, as well as the standard deviation of the
measurements.

(E2): [1 human-minute + 5 compute-minutes + 1GB disk]:
This experiment is meant to support the claim (C2)
above.
How to: Similar to the previous experiment, the
benchmark suites for Bitcoin, TLS 1.3, and We-
bAssembly are respectively located in the direc-
tories vest-dsl/bitcoin, vest-dsl/tls, and
vest-dsl/wasm. Simply run make from within each
of these directories to verify (and time the verification
time) of the parsers/serializers generated by Vest.
Results: The verification results (number of verified
components and errors, if any, as well as the total verifi-
cation time) will be printed to the console. All produced
parsers/serializers should verify within seconds without
any errors.

All results of the experiments should be comparable to
the results presented in the Evaluation section (Section 7)
of the paper. We do not include the verification result for
EverParse [8] in this artifact, as it will take several hours to
verify.

A.5 Notes on Reusability
Vest is designed to be (re)usable by developers who want
to get high-assurance and performant parsers and serializers

https://doi.org/10.5281/zenodo.15611103
https://doi.org/10.5281/zenodo.15611103


for their binary formats. To use Vest, most developers can
define their binary format in VestDSL directly, whose syntax
and semantics are defined in the paper. Expert developers
can also use/extend VestLib directly to build custom parsers
and serializers. Though extending VestLib requires a good
understanding of the Verus verifier, using VestLib should be
straightforward for developers familiar with Rust.

Vest is developed in an open-source repository, where you
can find the detailed documentation, examples, and tutorials
on how to use it.

https://github.com/secure-foundations/vest

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[1] Criterion.rs. https://github.com/bheisler/
criterion.rs, 2024.

[2] Polybench/c. https://github.com/
MatthiasJReisinger/PolyBenchC-4.2.1, 2024.

[3] Rust bitcoin. https://github.com/rust-bitcoin/
rust-bitcoin, 2024.

[4] Rustls. https://github.com/rustls/rustls, 2024.

[5] wasmparser. https://github.com/
bytecodealliance/wasmparser, 2024.

[6] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Hol-
man, D. Gohman, L. Wagner, A. Zakai, and J. Bastien.
Bringing the Web up to speed with WebAssembly. SIG-
PLAN Not., 52(6):185–200, June 2017.

[7] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen. Tranco: A research-
oriented top sites ranking hardened against manipula-
tion. In Proceedings of the 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, Feb.
2019.

[8] T. Ramananandro, A. Delignat-Lavaud, C. Fournet,
N. Swamy, T. Chajed, N. dim Kobeissi, and J. Protzenko.
EverParse: Verified secure zero-copy parsers for authenti-
cated message formats. In Proceedings of the USENIX
Security Symposium, Aug. 2019.

https://github.com/secure-foundations/vest
https://secartifacts.github.io/usenixsec2025/
https://github.com/bheisler/criterion.rs
https://github.com/bheisler/criterion.rs
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/rust-bitcoin/rust-bitcoin
https://github.com/rust-bitcoin/rust-bitcoin
https://github.com/rustls/rustls
https://github.com/bytecodealliance/wasmparser
https://github.com/bytecodealliance/wasmparser

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


