ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Aion: Robust and
Efficient Multi-Round Single-Mask Secure Aggregation
Against Malicious Participants

Yizhong Liu®, Zixiao Jia®, Zian Jin", Xiao Chen", Song Bian',
Runhua Xu¥, Dawei Li"™, Jianwei Liu™*, Yuan Lu®
TSchool of Cyber Science and Technology, Beihang University, X School of Computer Science and Technology, Beihang University,

Unstitute of Software, Chinese Academy of Sciences

Email: {liuyizhong, jiazixiao, jinzian, chenxiao, sbian, runhua, lidawei, liujianwei } @buaa.edu.cn, luyuan@iscas.ac.cn

A Artifact Appendix

A.1 Abstract

This paper introduces Aion, a multi-round single-mask secure
aggregation scheme with evolving input validation against
malicious clients and aggregators. The artifact includes im-
plementations of the core components evaluated in our paper,
covering the following experiments: Secure Aggregation Pro-
tocol Simulation (E1), Input Validation Evaluation (E2), and
Gradient Inversion Attack (E3). In E1, we evaluate Aion’s
performance and robustness in terms of execution time, mes-
sage overhead, and network resilience under varying system
parameters. E2 evaluates Aion’s Lp-norm-based input val-
idation against poisoning attacks on multiple datasets. E3
reproduces a gradient inversion attack with access to labels
and BatchNorm statistics, demonstrating the effectiveness of
Aion’s mask-based privacy protection.

A.2 Description & Requirements

This section details the experimental setup, specifying the
hardware and software environments, as well as the bench-
marks employed to generate the reported results.

A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns associated
with the execution of this artifact.

A.2.2 How to access

Our artifact is available at https://doi.org/10.5281/
zenodo.15605465.

A.2.3 Hardware dependencies

Evaluating our artifact requires a system equipped with at least
an NVIDIA GeForce RTX 3060 GPU and with no specific
CPU requirements. However, for efficiency, we recommend

using a higher configuration, e.g., NVIDIA GeForce RTX
4090 GPU and Intel Core i9-14900KF.

A.2.4 Software dependencies

E1 is compatible with both Windows and Linux, except for
the ACORN scheme, which is only supported on Linux. E2 is
compatible with Windows, while E3 is for Linux. We strongly
recommend deploying E2 and E3 using Docker, which is
compatible with both Windows and Linux. All required de-
pendencies are listed in the requirements.txt.

A.2.5 Benchmarks

Our experiments require the CIFAR10, FMNIST, EMNIST-
Byclass, and SHAKESPEARE datasets, which are automat-
ically downloaded from their official sources during code
execution. The ResNet-18, LeNet-5, and ResNet-9 models
are used in E2 and E3.

A.3 Set-up

This section provides the steps necessary to install and con-
figure the environment for evaluating the artifact.

A.3.1 Installation

We use Anaconda to set up the environment of E1.

1. Create a new Conda environment named aion and acti-
vate it: conda create --name aion python=3.8
conda activate aion

2. Use pip to install the required packages: pip install
-r requirements.txt

We recommend using Docker for installation of E2 and E3.
The pre-built images can be downloaded as follows:

E2: docker pull aionaion/input_validation:latest

E3: docker pull aionaion/gradattack:latest

A.3.2 Basic Test

For E1, enter the folder pki_files and run setup_pki.py:
cd pki_files


https://doi.org/10.5281/zenodo.15605465
https://doi.org/10.5281/zenodo.15605465

python setup_pki.py

cd ..

E1 has multiple configs.

-c [protocol name]

-n [number of clients (power of 2)]

-1 [number of iterations (training rounds) ]

-A [number of aggregators]

Aion supports batches of clients with size power of 2, e.g.,
128, 256, 512, 1024, 2048, 4096.

Example command:

python abides.py -c aion -n 128 -A 8 -i 10

For E2 and E3, once the image is pulled, activate the main
container to run the functionality test:

E2: docker run --gpus all --rm
aionaion/input_validation:latest

E3: docker run --gpus all --rm
aionaion/gradattack:latest

You can also verify that all required dependencies are cor-
rectly installed without using Docker:

E2: python ./FL_Backdoor_CV/roles/autorun.py

E3: python examples/attack_cifarlO_
gradinversion.py #remove spaces in file path

For E2, if the training progresses to Round 301, you can
safely terminate the process. For E3, we recommend waiting
until the attack completes to inspect the reconstructed image.

A.4 Evaluation workflow

In this section, we present the main claims of the paper along
with the experiments designed to support them.

A.4.1 Major Claims

The major claims presented in our paper are as follows:

(C1): Aion consistently demonstrates superior performance
in terms of execution time and communication over-
head compared to state-of-the-art schemes across vary-
ing numbers of clients (¢) and aggregators (n). This is
proven by the experiment (E1.1) described in Section
7.1, whose results are illustrated in Figure 2 (for varying
q) and Figure 3 (for varying n).

(C2): Aion maintains robust and efficient performance even
as the security parameter for secret sharing (p) increases,
showing significantly less performance degradation com-
pared to competing schemes. This is proven by the ex-
periment (E1.2) described in the supplementary material
(Appendix C), whose results are illustrated in Figure 13.

(C3): Aion exhibits strong resilience and superior time effi-
ciency under adverse network conditions, consistently
outperforming other masking-based schemes. This is
proven by the experiment (E1.3) described in the sup-
plementary material (Appendix C), whose results are
illustrated in Figure 14.

(C4): Aion effectively defends against poisoning attacks
when the poisoning ratio is below 50%. This is proved

by experiment (E2), described in Section 7.2, with the
corresponding results presented in Figures 4 and 5.

(C5): Aion is shown to be robust against gradient inversion
attacks even when attackers have access to private image
labels and BatchNorm statistics, as evidenced by experi-
ment (E3) in Appendix F.2 and the corresponding results
in Figure 16.

A.4.2 Experiments

The following experiments provide supporting evidence for

the main claims of the paper.

(E1.1): This experiment aims to verify that Aion has supe-
rior performance in terms of execution time and mes-
sage overhead compared to state-of-the-art schemes
(Flamingo, ACORN, SecAgg+) when varying the num-
ber of clients (g) and aggregators (7).

Execution: To reproduce the results for varying client
numbers (Figure 2), run the following commands, iterat-
ing through the number of clients —n with values of 128,
256, 512, 1024. The number of aggregators is fixed at 8.
python abides.py -c aion -n 128 -A 8 -1 10
python abides.py -c aion -n 256 -A 8 -1 10
python abides.py -c aion -n 512 -A 8 -1 10
python abides.py -c aion -n 1024 -A 8 -i 10
To reproduce the results for varying aggregator num-
bers (Figure 3), run the following commands, iterating
through the number of aggregators -A with values of 8,
16, 32, 64. The number of clients -n is fixed at 512.
python abides.py -c aion -n 512 -A 8 -i 10
python abides.py -c aion -n 512 -A 16 -i 10
python abides.py -c aion -n 512 -A 32 -i 10
python abides.py -c aion -n 512 -A 64 -i 10
Results: The script will output the execution time (in
seconds) and message overhead (in bytes) for the ini-
tialization and aggregation phases. You can plot these
values to reproduce Figures 2 and 3. The performance is
expected to surpass the results of the baseline schemes
reported in the figures.

(E1.2): This experiment verifies that even as the security pa-
rameter p (the prime size for secret sharing) increases,
Aion’s performance remains robust and efficient, degrad-
ing much more gracefully than competing schemes.
Execution: Vary the --prime_bits with values of
2048, 3072, 4096, with the number of clients -n set to
256 and the number of aggregators -2 set to 8.
python abides.py -c aion -n 256 -A 8 -i 10
--prime_bits 2048
python abides.py -c aion -n 256 -A 8 -1 10
--prime_bits 3072
python abides.py -c aion -n 256 -A 8 -1 10
-—prime_bits 4096
Results: The script will report the initialization and ag-
gregation times for each configuration. After running all
commands, plot the execution times against the prime



sizes to reproduce Figure 13. The performance is ex-
pected to surpass the results of the baseline schemes
reported in the figure.

(E1.3): This experiment shows Aion’s strong resilience and

superior time efficiency under adverse network condi-
tions, including high latency and low bandwidth.
Execution: Varying latency (corresponding to Figures
14a, 14b):

For each scheme, run the script using different
--latency values (e.g., 10, 100 ms):

python abides.py -c aion -n 512 -A 8 -i 10
--latency 10

python abides.py -c aion -n 512 -A 8 -i 10
--latency 100

Varying bandwidth (corresponding to Figures 14c, 14d):
For each scheme, run the script using different
--bandwidth values (e.g., 1, 5, 10 Mbps):

python abides.py -c aion -n 512 -A 8 -i 10
--bandwidth 1

python abides.py -c aion -n 512 -A 8 -i 10
--bandwidth 5

python abides.py -c aion -n 512 -A 8 -i 10
--bandwidth 10

Results: The script will output the total time overhead
(computation + communication) for the initialization and
aggregation phases under the simulated network condi-
tions. By plotting these results, you can reproduce Figure
14. Aion is expected to have the lowest time overhead
across all tested conditions, with its advantage being
most pronounced in challenging environments such as
high latency and low bandwidth.

(E2): This experiment evaluates whether Aion can effectively

defend against poisoning attacks.

How to: To run the experiments, Docker users should
enter the container with: docker run --gpus all -it
aionaion/input_validation:latest /bin/bash.
Then execute the scripts in the roles folder (e.g.,
attackl_cifarl0.py). You can adjust the poisoning
ratio using number_of_adversaries, the mask ratio
using weight, and the boost rate of malicious gradients
using mal_boost.

Execution: Please run the command:

python ./FL_Backdoor_CV/roles/
attackl_cifarl0O.py --aggregation_rule aion
--number_of_adversaries 5

#remove spaces in file path

This process is expected to take approximately 20 min-
utes. Upon completion, the ASR and TER values will
be recorded in .pt files within the results folder. To
reproduce the results shown in Figure 4, you can vary
the number_of_adversaries parameter from 5 to 50.
python ./FL_Backdoor_CV/roles/
attack2_cifarl0.py

--aggregation_rule aion --weight 0.1

python ./FL_Backdoor_CV/roles/
attack3_cifarl0.py
--aggregation_rule aion --mal_boost 50
#remove spaces in file path
You can vary the weight parameter from 0.05 to 0.5 and
the mal_boost parameter from 25 to 250. The results
contribute to Aion curves presented in Figures 6 and 8.
Results: You can check the results by running:
python check_results.py.

(E3): : This experiment aims to demonstrate that Aion is
robust against gradient inversion attacks.
How to: To run the experiments, please enter the con-
tainer’s interactive environment. The following com-
mands also mount a local results directory into the
container to save attack outputs.
docker run --rm -it --gpus all -v "%cd%
results:/app/results" aionaion/gradattack
/bin/bash (For Windows)
sudo docker run --rm -it --gpus all
-v "SPWD/results":/app/results
aionaion/gradattack /bin/bash (For Linux)
To run the experiments, execute
attack_cifarl0_gradinversion.py in the example
folder. Each run will generate a reconstructed image.
Preparation: You can optionally train the checkpoint
using Aion as the target model.
python3 examples/train_cifarl0.py
--n_epoch 48 --logname CIFAR10/Aion
--defense_aion --weight 0.1
However, this step is not required, as we have provided
pre-trained checkpoints in the checkpoint_old folder.
Execution: Please run the command:
python3 examples/attack_cifarl0_
gradinversion.py --batch_size 16 --BN_exact
-—tv 0.1 --bn_reqg 0.005 --defense_aion
--weight 0.1 --attack_checkpoint
checkpoint_old/aion_epoch=48.ckpt
#remove spaces in file path
To perform an attack on a newly trained model, be sure to
update the attack_checkpoint parameter accordingly.
Note that newly generated checkpoints are saved in the
checkpoint folder.
Results: This process is expected to take approximately
10 minutes. Upon completion, the reconstructed im-
age, reconstructed.png, will be saved in the results
folder on your local machine (the one you mapped to the
Docker container).

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


