
USENIX Security ’25 Artifact Appendix: SNI5GECT: A Practical

Approach to Inject aNRchy into 5G NR

Shijie Luo, Matheus E. Garbelini, Sudipta Chattopadhyay, and Jianying Zhou

Singapore University of Technology and Design

A Artifact Appendix

A.1 Abstract

As part of our commitment to Open Science, we provide

the full implementation of all components described in the

SNI5GECT paper. This includes source code, binaries, and

scripts necessary to evaluate 5G over-the-air sniffing and mes-

sage injection using a standard PC (x86_64) running Ubuntu

22.04. Given the over-the-air nature of our evaluation, which

relies on specific 5G target devices and a USRP Software De-

fined Radio (SDR), we also offer remote access to a machine

equipped with this setup. Access is granted via SSH using a

private key. In addition to the binaries, we provide the evalua-

tion results and scripts required to reproduce the tables and

figures presented in the SNI5GECT paper, by generating fig-

ures and terminal outputs. The evaluation procedure consists

of a series of scripts, either included directly in the artifact

or described in this appendix. Finally, the artifact features

exploit scripts that demonstrate real-world attacks against

Commercial Off-the-Shelf (COTS) 5G devices connected to

the remote testbed.

srsRAN

gNB
UE

Downlink

Uplink

Attacker

OTA

Sniffing

Selective

Injection via Overshadowing

open5GS Core

Network

Figure 1: Overview of SNI5GECT evaluation

A.2 Description & Requirements

This artifact demonstrates the capabilities of our framework,

including the setup for sniffing over-the-air 5G signals and

injecting messages at specific stages of the communication

process. To simplify testing, the remote evaluation machine is

pre-configured with all necessary system libraries and depen-

dencies required to run SNI5GECT. Hardware requirements

are detailed in Section A.2.3, and instructions for building the

system from source are provided in Section A.3.

A.2.1 Security, privacy, and ethical concerns

The test environment involves deploying a test 5G base station,

which may cause nearby devices to connect to it. However,

only devices using SIM cards configured with test Mobile

Country Codes (MCC) and Mobile Network Codes (MNC)

are affected. During evaluation, target phones may experience

temporary effects such as modem crashes, fingerprinting, or

network downgrade attacks. These effects are non-permanent

and can be fully resolved by rebooting the device or reinsert-

ing the SIM card.

No persistent modifications are made to device firmware or

operating systems, and no user data is accessed or stored at any

point. We strongly recommend using dedicated test devices

to avoid unintentional disruption to personal or production

equipment.

A.2.2 How to Access

The released artifacts is publicly available on Zenodo:

https://doi.org/10.5281/zenodo.15601773.

We also provide a server that has all the hardware and

software dependencies. Access to the evaluation server is

provided via a Cloudflare SSH tunnel. Please ensure that the

cloudflared binary is installed on the client machine; it can

be downloaded from the official Cloudflare website: https:

//developers.cloudflare.com/cloudflare-one/

connections/connect-networks/downloads/.

Next, configure SSH client by adding the following entry

to ∼/.ssh/config file:

Host sni5gect-artifacts

HostName sni5gect.roskey.net

User root

ProxyCommand cloudflared access ssh --hostname %h

IdentityFile ~/.ssh/artifact.key

Once configured, the reviewer can access the evaluation

environment using:

chmod 0600 ~/.ssh/artifact.key

ssh sni5gect-artifacts

To transfer PDF or PCAP files to local machine, we rec-

ommend using SFTP. Additionally, the Docker container in-

cludes an x11vnc server for graphical access. Tools such as

https://doi.org/10.5281/zenodo.15601773
https://developers.cloudflare.com/cloudflare-one/connections/connect-networks/downloads/
https://developers.cloudflare.com/cloudflare-one/connections/connect-networks/downloads/
https://developers.cloudflare.com/cloudflare-one/connections/connect-networks/downloads/

RealVNC Viewer can be used to connect to the graphical in-

terface at localhost:5900 after setting up a port forwarding

using ssh.

ssh -L 5900:localhost:5900 sni5gect-artifacts

A.2.3 Hardware dependencies

The following hardware components are required to evaluate

the SNI5GECT framework:

• USRP B210 SDR – Used to run the legitimate srsRAN

base station.

• USRP B210 SDR – Dedicated to the SNI5GECT frame-

work for over-the-air sniffing and injection.

• OnePlus Nord CE2 (Patch version: 2023-05-05) – Vul-

nerable User Equipment (UE) used for evaluation. (adb

id: UWEUW4XG8XCA8PWS)

• Pixel 7 (Patch version: 2023-05-05) – Vulnerable

User Equipment (UE) used for evaluation. (adb id:

27211FDH20096Z)

• Samsung S22 (Patch version: 2024-06-01) – Vulnera-

ble User Equipment (UE) used for evaluation. (adb id:

R5CT720QT7H)

• Huawei P40 (Patch version: 2024-02-01) – Vulnera-

ble User Equipment (UE) used for evaluation. (adb id:

K5J0220312001992)

• Fibocom FM150-AE USB modem – Vulnerable User

Equipment (UE) used for evaluation.

All listed devices are physically connected to the remote

evaluation machine and pre-configured for remote experimen-

tation.

A.2.4 Software dependencies

All software dependencies required to run the SNI5GECT

framework are specified in the provided Dockerfile. These

dependencies are intended to run inside a lightweight Ubuntu

22.04 Docker container without a GUI or other heavy back-

ground services. The main runtime components include:

• 5ghoul-5g-nr-attacks – commit 9739994 (included in

the artifact).

• SNI5GECT– Modified from srsRAN 4G.

• srsRAN Project – Version release_24_10_1 (used for

the legitimate 5G base station).

• Open5GS – Core network implementation for srsRAN

legitimate base station.

• Mongodb – Required by Open5GS for credential storage.

• QCSuper – Tools to communicate with the Qualcomm

modems to get the raw frames received.

A.2.5 Benchmarks

We compared the DCI sniffing performance with NR-Scope

srsran branch commit version: 2f30b0a3. https://github.

com/PrincetonUniversity/NR-Scope

A.3 Getting Started

This section details the steps required to set up the same eval-

uation environment used in our experiments. To streamline

the process and prevent dependency mismatches, we provide

a pre-configured Dockerfile and docker-compose.yml.

The Dockerfile initializes the environment using the

ubuntu:22.04 base image and installs all necessary com-

ponents to run the SNI5GECT framework.

A.3.1 Installation (Optional)

To set up the environment, run the following commands from

the root of the artifact directory. These steps will install all de-

pendencies, compile the SNI5GECT framework, and start the

srsRAN base station, Open5GS core network, and QCSuper

in a fully functional state:

Load a pre-build docker container

wget https://zenodo.org/records/15601773/files/sni5\

gect-artifacts-docker.tar.gz

docker load < sni5gect-artifacts-docker.tar.gz

Or build the docker container from scratch

wget https://zenodo.org/records/15601773/files/Sni5\

Gect-source-code.zip

unzip Sni5Gect-source-code.zip

cd Sni5Gect-5GNR-sniffing-and-exploitation-main

docker compose build artifacts --build-arg GITHUB_TOKEN=\

github_pat_11AH6MR7A02x31orqrUICh_uSzIpTz1u5syNaR2Q3\

CThfLfofbjC94lKHfDRM9l88QLFU2MHCNAViBTdG4

Next, download the evaluation results, update the path in

the docker-compose.yml and start the docker container:

wget https://zenodo.org/records/15601773/files/sni5\

gect-evaluation-results.zip

unzip sni5gect-evaluation-results.zip

docker compose up -d

Then to access the container, use the following:

docker exec -it artifacts bash

The folder structure inside the /root directory is listed as

follows:

.

|-- sni5gect # Sni5Gect project root folder

| |-- bin -> /root/wdissector/bin

| |-- build # Sni5Gect build output folder

| |-- configs # Configuration files for Sni5Gect

https://github.com/PrincetonUniversity/NR-Scope
https://github.com/PrincetonUniversity/NR-Scope

| |-- logs # Output for logs and PCAP files

| |-- modules # Sni5Gect exploit modules

| |-- scripts # Scripts to get sniffing performance

| |-- shadower # Source code for Sni5Gect framework

| | |-- hdr

| | |-- modules # Source code of exploit modules

| | |-- src

Broadcast Worker implementation

| | | |-- broadcast_worker.cc

GNB DL Injector implementation

| | | |-- gnb_dl_worker.cc

GNB UL Worker implementation

| | | |-- gnb_ul_worker.cc

Distributes received subframes to components

| | | |-- scheduler.cc

Syncher implementation

| | | |-- syncer.cc

UE DL Worker implementation

| | | |-- ue_dl_worker.cc

UE Tracker implementation

| | | |-- ue_tracker.cc

wDissector wrapper

| | | |-- wd_worker.cc

|-- srsran # Evaluation legitimate 5G base station

|-- open5gs # Evaluation legitimate Core network

|-- qcsuper # QCSuper to intercept raw frames

|-- wdissector # wDissector dependency

Evaluation results presented in the paper

|-- evaluation_results

| |-- dci_evaluation # DCI sniffing result

| |-- scripts # Utils scripts

| |-- sni5gect_5g_attacks # Results for different \

attacks and different phones

| |-- sni5gect_injection_different_distance

| |-- sni5gect_injection_different_state

| |-- sni5gect_sniffing_srsran # Sniffing performance

| |-- sni5gect_uplink_sniffing

| |-- different_distance

| |-- different_ta_offset

A.3.2 Basic Test of Radio Devices

To verify that the USRP B210 SDR devices are correctly

connected to the host machine, run the following command:

uhd_find_devices

The expected output should list both SDR devices, similar

to the following Figure 2. If the devices are not detected cor-

rectly, please ensure they are properly connected and powered.

Next, update the configuration file at the following location:

/root/sni5gect/configs/config-srsran-n78-20MHz.conf

Ensure the USRP device is correctly specified, for example:

[source]

source_type = uhd

source_module = build/shadower/libuhd_source.so

source_params = type=b200,serial=3218CC4

Step 1: In terminal 1, start the Open5GS Core Network:

cd /root/open5gs

./build/tests/app/app -c open5gs.yaml

Figure 2: List UHD Devices

Step 2: Open a new terminal, start the srsRAN Base Station:

cd /root/srsran/

./build/apps/gnb/gnb -c srsran.conf

To confirm that the base station is running correctly, look

for the line containing base station frequency information as

shown in Figure 3.

Figure 3: Successful started srsRAN

Step 3: Open a new terminal, start the SNI5GECT Frame-

work as follows:

cd /root/sni5gect

./build/shadower/shadower \

configs/config-srsran-n78-20MHz.conf

If successful, the output in Figure 4, containing text MIB

applied to all workers and SIB1 applied to all

workers confirms that the SNI5GECT framework is running

and ready to intercept phones connecting to the legitimate

base station.

Step 4: To check if the phones are connected to the com-

puter, open a new terminal and run the following command:

adb devices -l

Figure 4: SNI5GECT pending UE connect

The following android devices in Figure 5 can be identified:

Figure 5: adb devices -l

If the device is connected correctly, the next step is to toggle

the airplane mode and see if SNI5GECT captured the phone

connecting to the base station.

To turn off airplane mode (connecting to 5G base station):

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode disable

To check the 5G connection status, please use the following

command:

adb -s UWEUW4XG8XCA8PWS shell dumpsys telephony.registry |\

grep mTelephonyDisplayInfo=TelephonyDisplayInfo

Example Output: Connected to 5G NR

mTelephonyDisplayInfo=TelephonyDisplayInfo {network=NR, \

overrideNetwork=NONE, isRoaming=false}

Example Output: Connected to LTE/Emergency Service

mTelephonyDisplayInfo=TelephonyDisplayInfo {network=LTE, \

overrideNetwork=NONE, isRoaming=false}

Example Output: No connection

mTelephonyDisplayInfo=TelephonyDisplayInfo {network=\

UNKNOWN, overrideNetwork=NONE, isRoaming=false}

To turn on airplane mode (disconnecting from 5G base

station), use the following:

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode enable

On the SNI5GECT terminal in example Figure 6, if we can

observe that SNI5GECT have detected a new UE with the key-

word Found new UE with tc-rnti, then we can confirm

that each component works well.

Figure 6: SNI5GECT detected UE

A.4 Evaluation workflow

In this section, we outline the experimental workflow used to

evaluate the SNI5GECT framework. The evaluation is struc-

tured around three core objectives, each targeting a specific

capability of the system. We describe how to reproduce these

evaluations using the provided setup and explain how to gen-

erate the same figures and tables presented in the paper.

1. DCI Sniffing Performance: We begin by evaluating the

SNI5GECT framework’s ability to detect Downlink Con-

trol Information (DCI). DCIs are essential for scheduling

both uplink and downlink transmissions, and their reli-

able decoding is a prerequisite for further message inter-

pretation. This step assesses the robustness and accuracy

of DCI detection.

2. Message Sniffing Performance: Building on the DCI

results, we then assess the overall sniffing capabilities of

the SNI5GECT framework. This includes decoding ac-

tual downlink and uplink messages exchanged between

the User Equipment (UE) and the legitimate base station.

This evaluation reveals how effectively the framework

can reconstruct ongoing 5G communications and track

session states.

3. Injection and Attack Performance: Finally, we evalu-

ate the framework’s active capabilities. Using QCSuper,

we confirm whether the injected messages are success-

fully received by the USB modem. In addition to con-

firmation via QCSuper, we also perform over-the-air

injection attacks in real-time. This phase demonstrates

the effectiveness of SNI5GECT in manipulating live 5G

communication between the base station and vulnerable

UEs.

A.4.1 Major Claims

In this section, we summarize the major claims presented in

the paper and highlight the corresponding expected evaluation

outcomes.

(C1): Reliable DCI Sniffing Performance — We claim that

SNI5GECT can reliably sniff Downlink Control Informa-

tion (DCI), which forms the foundation for subsequent

decoding of downlink and uplink messages. We expect

the DCI sniffing success rate to exceed 90%, as shown

in Figure 10.

Start open5GS core

network
Start srsRAN gNB Start Sni5Gect

Wait for a few seconds

Turn off airplane mode

to connect

Turn on airplane mode

to disconnect

Stop base station

and Sni5Gect
adb

Figure 7: SNI5GECT Evaluation steps

(C2): Robust Sniffing Performance — We claim that the

SNI5GECT framework offers robust overall sniffing per-

formance. The expected overall message sniffing accu-

racy is around 80%, with uplink message decoding often

achieving around 70% accuracy. These results corre-

spond to Table 1, Figure 13, and Figure 14.

(C3): Effective Injection Capabilities — We claim that

SNI5GECT can effectively inject messages into the com-

munication stream of a target UE. The expected injection

success rate can achieve around 60% or higher, as demon-

strated in Table 3 and Table 2. This enables a range of

successful attacks leveraging the injection capability. Re-

sults are shown in Figure 26 and Figure 27.

A.4.2 Evaluation Steps

The overall evaluation steps are shown in the Figure 7. In this

section, we describe in detail about how to run each step.

1. Clear the logs folder: The logs folder should contain

only the logs from the current evaluation session. Resid-

ual logs from previous sessions may affect the accuracy

of the evaluation results. Please clear the logs folder

before starting any experiment using the following com-

mand:

rm -rf /root/sni5gect/logs/*

2. Start open5GS core network: The open5GS core net-

work is required to run the legitimate 5G base station.

Firstly open a terminal and please refer to the following

command to start the open5GS.

cd /root/open5gs

./build/tests/app/app -c open5gs.yaml

If the open5GS core network fails to start and shows that

port 7777 is in use, please use the following command

to kill existing open5gs and run the command above to

start the open5GS core network again:

sudo pkill -9 app

sudo pkill -9 open5gs

The logs will be stored in the following file

/root/sni5gect/logs/open5gs.log

3. Start srsRAN gNB: After the open5GS core network

starts correctly, open a new terminal and use the follow-

ing command to start the srsRAN base station.

cd /root/srsran/

./build/apps/gnb/gnb -c srsran.conf

The result gnb.log and mac_nr.pcap will be stored in

folder /root/sni5gect/logs/ for later evaluation.

4. Start SNI5GECT: After the srsRAN base station starts

correctly, open a new terminal and start the SNI5GECT

framework and pipe the command line output to the logs

folder for later evaluation.

cd /root/sni5gect

./build/shadower/shadower configs/config-srsran-n78-2\

0MHz.conf | tee logs/sni5gect.log

5. Toggle airplane mode: The airplane mode can be easily

controlled via adb command. Please note that there are

multiple phones connected to the server, so the evaluators

have to specify the adb id to control a specific phone.

Disable airplane mode (connect to 5G base station)

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode disable

Turn on airplane mode (disconnect from 5G base \

station)

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode enable

6. Stop the base station and SNI5GECT: Simply press

Ctrl+C to stop each component.

A.4.3 Experiments

This section describes the experiments conducted to evaluate

and support each claim. We also demonstrate how to use

the provided scripts to analyze the provided test data and

reproduce the tables and figures presented in the paper.

(E1): DCI Sniffing Evaluation: [60 human-minutes]

This experiment evaluates the DCI sniffing performance

of the SNI5GECT framework by comparing the number

of correctly sniffed DCI messages with the ground truth

obtained from the srsRAN legitimate base station.

How to: Connect a UE (e.g., a phone) to the legitimate

base station. Once SNI5GECT detects the target UE, it

begins sniffing the DCI messages exchanged between the

base station and the UE. After collecting data for 5 to 10

seconds, turn on the airplane mode, stop both SNI5GECT

and the base station. (This is because some evaluation

devices may unexpectedly drop their connection after

approximately 15 seconds. The recommended 5–10 sec-

ond capture window helps ensure that the connection

remains stable throughout the evaluation period.) Then,

compare the number of correctly sniffed DCIs against

the ground truth logs generated by the base station.

Preparation: Edit the configuration file:

/root/sni5gect/configs/config-srsran-n78-20MHz.conf

Set the logging level for the worker to DEBUG and

ensure the dummy exploit module is used for passive

sniffing:

[log]

log_level = INFO

syncer_log_level = INFO

worker_log_level = DEBUG # Change the worker log \

level to debug to retrieve the DCI information

bc_worker_log_level = INFO

[exploit]

module = modules/lib_dummy.so

Execution: The command used to run the evaluation

is provided in Section A.4.2. Please following the com-

mand provided to run the evaluation and collect the logs.

After data collection, stop both the base station and the

SNI5GECT framework.

An example command-line output is shown in Figure 8.

From the white text, we can observe the transmitted DCI

information, including their formats, frequency and time

allocations, as well as the modulation and coding scheme.

The subsequent line demonstrates how SNI5GECT uti-

lizes this scheduling information from the DCI to at-

tempt decoding the actual messages.

Results: The logs for the above evaluation will be stored

in the folder /root/sni5gect/logs. Please use the fol-

Figure 8: DCI sniffing example output

lowing script to compute the DCI sniffing success rate,

it will give out the total number of DCIs from srsRAN,

number of DCIs sniffed by SNI5GECT and the corre-

sponding success rate in the terminal output. Example

output is shown in Figure 9.

cd /root/sni5gect

python3 scripts/get_dci_sniffing_performance.py

Figure 9: Get DCI sniffing performance example output

Figure 10 corresponds to Figure 6: Success Rate of

DCI Search in the paper. Data and scripts are located at

/root/evaluation_results/dci_evaluation/

1 2 3 4 5 6 Total
Round

0
10
20
30
40
50
60
70
80
90

100

Su
cc

es
s R

at
e

(%
)

 99.7 99.1 98.6 99.5 95.9 99.4 99.3

 13.1

 39.9 37.0
 47.0 43.6

 23.9
 35.8

Sni5Gect NR-Scope

Figure 10: Success Rate of DCI search

To evaluate the existing result and plot the performance

as shown in the paper, run the following commands:

cd /root/evaluation_results

Get the DCI sniffing performance for Sni5Gect

python3 dci_evaluation/compare_sni5gect.py

Result stored in: /root/evaluation_results/\

dci_evaluation/sni5gect_eval_result.csv

Get the DCI sniffing performance for NR-Scope

python3 dci_evaluation/compare_nrscope.py

Result stored in: /root/evaluation_results/\

dci_evaluation/nrscope_eval_result.csv

Plot the figure based on the CSV data

cd /root/evaluation_results/dci_evaluation

python3 plot_result.py

Result plot: /root/evaluation_results/\

dci_evaluation/dci_sniffing_success_rate.pdf

(E2): Message Sniffing Evaluation: [60 human-minutes]

This experiment evaluates the message sniffing perfor-

mance of the SNI5GECT framework. It compares the

decoded downlink and uplink messages with the ground

truth collected from the srsRAN base station to measure

overall accuracy.

How to: Connect a UE (phone) to the legitimate base

station. Once SNI5GECT detects the target UE, it begins

sniffing both downlink and uplink messages from the

over-the-air signals exchanged between the base station

and the UE. After collecting data for 5 to 10 seconds,

stop both SNI5GECT and the base station. The resulting

PCAP file will be stored in the /root/sn5gect/logs/

directory. Finally, compare the sniffed messages with the

ground truth obtained from the base station.

Preparation: Configure the worker_log_level to

INFO and ensure the dummy exploit module is used for

passive sniffing:

[log]

log_level = INFO

syncer_log_level = INFO

worker_log_level = INFO

bc_worker_log_level = INFO

[exploit]

module = modules/lib_dummy.so

Execution: To evaluate the performance of message

sniffing, the process is the same as what we have shown

in DCI sniffing. Please refer to the same commands

presented in Section A.4.2. An example command-line

output is shown in Figure 11. In the output, downlink

messages sent from the base station to the UE are high-

lighted in green, while uplink messages sent from the

UE to the base station are highlighted in blue.

Figure 11: Sniffing Example output

Results: The logs for the above evaluation will be stored

in the folder /root/sni5gect/logs, with the messages

sniffed by SNI5GECT stored in the file with name for ex-

ample UE-17921.pcap. Please use the following script

to compute the message sniffing success rate, it will

give out the total number of messages sent between

srsRAN and the UE, as well as the messages sniffed

by SNI5GECT and the corresponding success rate in the

terminal output. Example output is shown in Figure 12.

cd /root/Sni5Gect

python3 scripts/get_sniffing_performance.py

Figure 12: Get sniffing performance example output

The paper presents three categories of message sniffing

performance evaluation:

1. Table 1: Corresponds to Table 2 in the paper and

demonstrates the effectiveness of SNI5GECT in

sniffing both downlink and uplink messages.

2. Figure 13: Corresponds to Figure 4 in the paper

and shows the success rate of uplink sniffing with

respect to the distance between the UE and the base

station.

3. Figure 14: Corresponds to Figure 5 in the paper

and illustrates the impact of varying TA (Timing

Advance) command offsets on uplink sniffing per-

formance.

Table 1: Effectiveness of SNI5GECT sniffing capability for

different distance between the UE and the SNI5GECT SDR.

Number of sniffed messages is provided alongside accuracy.
Device Dist. Sniffing Accuracy Uplink Downlink

OnePlus Nord CE 2
0 m 93.32% (4418) 75.77% (938) 99.54% (3480)

1 m 92.20% (8074) 70.45% (1576) 99.66% (6498)

Huawei P40 Pro
0 m 94.86% (1180) 86.08% (371) 99.51% (809)

1 m 94.74% (1262) 84.87% (387) 99.89% (875)

Pixel 7
0 m 86.55% (1094) 75.89% (491) 97.73% (603)

1 m 90.71% (1768) 74.11% (435) 97.87% (1333)

Samsung Galaxy S22
0 m 93.15% (1061) 88.78% (467) 96.90% (594)

1 m 97.51% (745) 94.68% (338) 100% (407)

Table 1: This table summarizes the effectiveness of

SNI5GECT in capturing both downlink and uplink mes-

sages. The evaluation was conducted with the UE posi-

tioned at two distances from the base station: 0 meters

and 1 meter. The corresponding experimental results are

stored in the following directory:

/root/evaluation_results/sni5gect_sniffing_srsran

To regenerate the CSV file from the raw log data, run

the following script, which parses the experiment results

and generates the message sniffing performance metrics:

cd /root/evaluation_results

python3 sni5gect_sniffing_srsran/\

get_sniffing_performance.py

Output file: /root/evaluation_results/sni5\

gect_sniffing_srsran/sniffing_performance.csv

5 10 15 20
Distance (m)

40

50

60

70

80

90

100

UL
 S

uc
ce

ss
 R

at
e 90.5%

81.7%

64.1%

95.7%

76.9%

85.0%

71.1%

91.8%

68.4%

79.8%

55.3%

91.1%

59.0%

87.8%

54.7%

69.9%

Device
Huawei
Oneplus

Pixel
Samsung

Figure 13: Success Rate of Uplink Sniffing w.r.t distance

Figure 13: Success Rate of Uplink Sniffing w.r.t dis-

tance This figure illustrates the success rate of uplink

message sniffing as the distance between the UE and

the sniffer increases. The raw experimental data used to

generate this figure is stored in the following directory:

/root/evaluation_results/sni5gect_uplink_sniffing/\

different_distance

To compute the success rate and generate Figure 13,

execute the following scripts:

cd /root/evaluation_results/sni5gect_uplink_sniffing

python3 parse_logs_different_distance.py

Output different_distance_detail.csv

python3 plot_different_distance.py

Result figure: uplink_sniffing_different_distance.\

pdf

TA-10 TA-8 TA-6 TA-4 TA-2 TA TA+2 TA+4 TA+6 TA+8 TA+10
TA Offset

0
10
20
30
40
50
60
70
80
90

100

Su
cc

es
s R

at
e

Pixel
Huawei

Samsung
Oneplus

Figure 14: Uplink Sniffing w.r.t TA command offset

Figure 14: Uplink Sniffing w.r.t TA command offset

This figure presents the uplink message sniffing success

rate under varying Timing Advance (TA) command off-

sets. The raw data used for this analysis is located in the

following directory:

/root/evaluation_results/sni5gect_uplink_sniffing/\

different_ta_offset

To process the logs, calculate the success rates, and gen-

erate Figure 14, execute the following commands:

cd /root/evaluation_results/sni5gect_uplink_sniffing

python3 parse_logs_different_ta_offset.py

Output different_ta_offset_detail.csv

python3 plot_different_ta.py

Result figure: uplink_sniffing_different_ta.pdf

(E3): Message Injection Evaluation: [120 human-

minutes] This experiment measures the effectiveness of

the SNI5GECT framework in injecting messages towards

a victim device. Using QCSuper and a USB modem, we

confirm successful message reception by the victim UE.

How to: In this evaluation, we utilize QCSuper, a tool

capable of interfacing directly with Qualcomm-based

USB modems to capture raw over-the-air frames. This

enables us to verify whether specific messages are re-

ceived by the target UE. We use cutecom to interact

with the USB modem over the serial interface in order

to manually initiate and terminate 5G connections.

Preparation: To perform message injection during the

5G attach procedure, different exploit modules are re-

quired depending on the message type and protocol

state. For example, to inject a NAS message immedi-

ately after a Registration Request, the module for

Registration Reject should be used, since the ini-

tial connection typically begins with the UE sending a

Registration Request message.

[exploit]

module = modules/lib_dg_registration_reject.so

Execution: First, start the base station as described

in Section A.4.2. Then, launch QCSuper with the fol-

lowing command. This will capture a packet trace in

qcsuper.pcap and display a live view of incoming

frames from the USB modem. The reviewer can use

client such as VNCViewer to connect to the vnc server

and observe the live traffic.

cd /root/qcsuper

python3 qcsuper.py --usb-modem auto --pcap-dump /root\

/sni5gect/logs/qcsuper.pcap --wireshark-live

Next, open a separate terminal and start cutecom to com-

municate with the USB modem via its serial interface.

This can be done in the GUI from the vnc session which

allows sending AT commands to trigger connection and

disconnection events on the target UE.

Alternatively, you can use the terminal-based application

minicom. To start a new session with minicom, run the

following command:

minicom -D /dev/ttyUSB2

Exit minicom:

Ctrl+A followed by X, then press Enter to exit \

minicom

Please refer to the following command to toggle the

airplane mode of the USB modem.

Check the modem starts and connects correctly

AT # Expecting: OK

Run cell search

AT+cops=?

Connect to 5G

AT+cops=1,2,00101,12

Disconnect from base station

AT+cops=2

An example command-line output is shown in Figure 15.

After receiving the Registration Request message,

the UE releases the connection. Following a timeout

period, the base station sends an RRC Release message

to terminate the connection.

Figure 15: Message Injection stdout Example

An example result captured from QCSuper is shown

in Figure 16. From the screenshot, we can con-

firm that the UE receives and accepts our injected

Registration Reject message with the cause N1

Mode not Allowed.

Figure 16: Message Injection QCSuper Example

Results: The evaluation process above will store the

result qcsuper.pcap to folder /root/sni5gect/logs

by default. To get the success rate of the injection perfor-

mance, please simply use the following command. This

will print the total number of UE accepted injections

over the total number of injections, as well as the suc-

cess rate in percentage on the standard output terminal.

The example output is shown in Figure 17

cd /root/sni5gect

python3 scripts/get_injection_performance.py

There are two sets of injection evaluation results pre-

sented in the paper:

Figure 17: Get message injection performance

• Table 3 corresponds to Table 3: SNI5GECT Injec-

tion Performance.

• Table 2 corresponds to Table 4: Injection Perfor-

mance at Different Distances.

Table 3 evaluates the injection success rate and message

duplication behavior at various states of the 5G connec-

tion procedure. The raw experiment data are stored in

the following directory:

/root/evaluation_results/sni5\

gect_injection_different_state

To regenerate the CSV file used in the paper and produce

the summarized table, run the following command:

Result for column RRC Setup Request

cd /root/evaluation_results/sni5\

gect_injection_different_state/\

injection_after_rrc_setup

python3 evaluate.py

Result for column Registration Request

cd /root/evaluation_results/sni5\

gect_injection_different_state/\

inject_after_registration_request

python3 evaluate.py

Result for column Authentication Failure

cd /root/evaluation_results/sni5\

gect_injection_different_state/\

inject_after_authentication_failure

python3 evaluate.py

Result for column Security Mode Complete

cd /root/evaluation_results/sni5\

gect_injection_different_state/\

inject_after_security_mode_complete

python3 evaluate.py

Table 2: Injection Performance at Different Distances.
Distance Total Success Success Rate

5m 73 70 95.89%

10m 65 61 93.85%

15m 73 69 94.52%

20m 73 61 83.56%

Table 2 evaluates how physical distance between the

attacker and the target UE impacts the injection success

rate. The raw data are stored in the directory:

/root/evaluation_results/sni5\

gect_injection_different_distance

To regenerate the CSV file containing the success and

total counts for each round at different distances, run:

cd /root/evaluation_results/sni5\

gect_injection_different_distance

python3 parse_logs.py

Result: result.csv

(E4): Example Attacks Evaluation: [Several hours] This

experiment demonstrates real-world attacks that lever-

age the message injection capabilities of the SNI5GECT

framework. These attacks are conducted against a live

victim UE to validate the framework’s end-to-end ex-

ploitation potential.

How to: In this evaluation, we trigger the phones to

connect to the target base station. At specific states dur-

ing the connection process, SNI5GECT injects carefully

crafted or intercepted messages into the communication

stream. This can induce various effects, such as protocol

downgrades, device fingerprinting, modem crashes, or

authentication bypasses.

Preparation: For each type of attack, use a dedicated

attack module. Refer to the list below for the appropri-

ate modules corresponding to each attack. Uncomment

the relevant line to enable the desired exploit module.

Please refer to Table 4 for the function of each module

and please note that only one exploit module should be

loaded at a time.

Sniffing

module = modules/lib_dummy.so

Fingerprint

module = modules/lib_identity_request.so

Sniff and extract Authentication Request

module = modules/\

lib_dg_authentication_request_sniffer.so

Downgrade Attacks

module = modules/lib_dg_authentication_replay.so

module = modules/lib_dg_registration_reject.so

5Ghoul attacks: crash the OnePlus MTK modem

module = modules/lib_mac_sch_mtk_rlc_crash.so

module = modules/lib_mac_sch_mtk_rrc_setup_crash_3.so

module = modules/lib_mac_sch_mtk_rrc_setup_crash_4.so

module = modules/lib_mac_sch_mtk_rrc_setup_crash_6.so

module = modules/lib_mac_sch_mtk_rrc_setup_crash_7.so

Authentication Bypass: affect Pixel 7 Exynos modem

module = modules/lib_plaintext_registration_accept.so

Execution: Update the exploit modules as needed, then

start the base station and SNI5GECT as described in

Section A.4.2. Toggle airplane mode on the device to

trigger a new connection.

Trigger the phone to connect to the base station

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode disable

Wait for a few seconds

Disconnect the phone from the base station

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode enable

Results: The behaviors and impacts of different

attacks vary. Some attacks result in effects such as

fingerprinting, downgrade, or authentication bypass.

Registration Reject Attack: After the User Equip-

ment (UE) sends a Registration Request message,

SNI5GECT injects a Registration Reject message.

Upon receiving and accepting this message, the UE

disconnects from the base station. Subsequently, the

base station may repeatedly attempt to resend mes-

sages such as Identity Request, Authentication

Request, or Security Mode Command, but receive no

response from the UE. An example command-line out-

put is shown in Figure 18. We can see SNI5GECT

sniffed the injected message Registration Reject,

we can also observe the base station kept send-

ing Authentication Request after the UE discon-

nects. If subsequent messages such as Authentication

Response or Security Mode Complete appear, or if

there are excessive occurrences of UL-SCH or DL-SCH, it

indicates that the attack has failed. Please toggle airplane

mode and attempt the attack again.

Figure 18: Registration Reject Example output

To run the evaluation, please follow the steps in Sec-

tion A.4.2. The result is expected to be stored in

/root/sni5gect/logs folder. To get the success rate

of such attack, please use the following command. This

will give out the success rate of Registration Reject

attack in standard output terminal similar to Figure 19.

python3 scripts/get_registration_reject_performance.\

py

Identity Request Attack: Following the UE’s transmis-

sion of a Registration Request message, SNI5GECT

injects an Identity Request message. When the vic-

tim UE receives and processes this message, it responds

with an Identity Response. SNI5GECT then sniffs

the Identity Response and extracts the SUCI, demon-

strating a fingerprinting attack. An example command-

line output is provided in Figure 20, we can observe the

base station sends Security Mode Command, but the

Table 3: SNI5GECT Injection Performance.

Duplication #
RRC Setup Request Registration Request Authentication Failure Security Mode Complete

Messages # Injected Success Rate # Messages # Injected Success Rate # Messages # Injected Success Rate # Messages # Injected Success Rate

1 356 306 85.96% 232 181 78.02% 47 29 61.70% 51 23 45.10%

2 251 219 87.25% 423 337 79.67% 72 60 83.33% 67 60 89.55%

3 316 272 86.08% 350 262 74.86% 42 28 66.67% 46 44 95.65%

4 234 202 86.32% 364 297 81.59% 71 51 71.83% 43 39 90.70%

Module File Description / Notes

lib_dummy.so Pure sniffing; no injection occurs.

lib_identity_request.so Fingerprinting attack: Injects Identity Request and expects an Identity Re-

sponse.

lib_dg_authentication_request_sniffer.so Sniffs the Authentication Request message.

lib_dg_authentication_replay.so Authentication replay attack: After sniffing, update the relevant file

shadower/modules/dg_authentication_replay.cc with the captured

Authentication Request and recompile (ninja -C build).

Note: After a successful attack, the UE may not reconnect to the base station

for 5+ minutes. Reboot the phone using adb -s {id} reboot.

lib_dg_registration_reject.so Downgrade attack: Sends Registration Reject to trigger immediate down-

grade.

lib_mac_sch_mtk_rlc_crash.so

lib_mac_sch_mtk_rrc_setup_crash_3.so

lib_mac_sch_mtk_rrc_setup_crash_4.so

lib_mac_sch_mtk_rrc_setup_crash_6.so

lib_mac_sch_mtk_rrc_setup_crash_7.so

5Ghoul attacks: Crash attacks affecting OnePlus devices with MTK modems.

lib_plaintext_registration_accept.so Authentication bypass: Only affects Pixel 7 devices with Exynos modem.

Table 4: Attack Modules and Their Descriptions

Figure 19: Get Registration Reject Performance Output

UE replies with Identity Response and the extracted

SUCI is shown in red. If this red message does not ap-

pear, it indicates that either the injection has failed or the

sniffer did not successfully capture the response. Please

toggle airplane mode to establish a new connection and

rerun the attack.

To run the evaluation, please follow the steps in Sec-

tion A.4.2. The result is expected to be stored in

/root/sni5gect/logs folder. To get the success rate

of such attack, please use the following command. This

will give out the success rate of Identity Request at-

tack in standard output terminal similar to Figure 21.

python3 scripts/get_identity_request_performance.py

Authentication Replay Attack: This is the

Figure 20: Identity Request Example output

Figure 21: Get Identity Request Performance Output

most complex exploit in our evaluation and

involves two stages: sniffing and replay-

ing. In the first stage (sniffing), the module

lib_dg_authentication_request_sniffer.so

is used to capture a legitimate Authentication

Request message sent from the base station to the UE.

This sniffing step only needs to be performed once per

specific UE; the captured Authentication Request

can be reused in subsequent replay attempts.

In the second stage (replaying), when a Registration

Request message is received, SNI5GECT replays

the previously captured Authentication Request.

The UE responds with an Authentication Failure

(cause: Synch Failure) and starts timer T3520. Af-

ter sniffing this response, SNI5GECT updates the

RLC and PDCP sequence numbers and replays the

Authentication Request again. This process may

repeat multiple times. Eventually, after timer T3520

expires, the UE deems that the network has failed

the authentication check, it locally releases the con-

nection, and bars the active cell. If no other 5G

base station is available, the UE ignores the cur-

rently available cell, downgrades to 4G and remains

in downgraded state for 300 seconds, as specified in

3GPP TS 24.501 version 16.5.1 Release 16, section

5.4.1.2.4.5 (Abnormal cases in the UE). In the ex-

ample output shown in Figure 22, the UE can be

seen replying with the Authentication Failure mes-

sage twice, and after replaying the Authentication

Request message the third time, the UE disconnects,

and the base station is keeps sending RRC Release. If

messages such as Authentication Response or UE

Capability Enquiry—which indicate progression in

the connection—appear, or if there are excessive occur-

rences of UL-SCH or DL-SCH, it means the attack has

failed. Please toggle airplane mode and try the attack

again.

Figure 22: Authentication Replay Example output

To run the evaluation, please follow the steps in Sec-

tion A.4.2. Please note that in this evaluation, we suggest

using the open5GS from the wdissector directory.

cd /root/wdissector/

./3rd-party/open5gs-core/build/tests/app/app -c \

configs/5gnr_gnb/open5gs.yaml

The result is expected to be stored in

/root/sni5gect/logs folder. To get the success

rate of such attack, please use the following com-

mand, which considers the attack as successful when

Authentication Failure is received more than one

time and the connection is not successfully established.

This will give out the success rate of Authentication

Request replay attack in standard output terminal.

python3 scripts/get_auth_replay_performance.py

5Ghoul Attacks: These attacks demonstrate how vul-

nerabilities discovered by the 5Ghoul framework can be

exploited to crash target UE modems using SNI5GECT,

resulting in Denial-of-Service (DoS) conditions.

CVE-2023-20702

module = modules/lib_mac_sch_mtk_rlc_crash.so

CVE-2023-32843

module = modules/lib_mac_sch_mtk_rrc_setup_crash_3.\

so

CVE-2023-32842

module = modules/lib_mac_sch_mtk_rrc_setup_crash_4.\

so

CVE-2024-20003

module = modules/lib_mac_sch_mtk_rrc_setup_crash_6.\

so

CVE-2023-32845

module = modules/lib_mac_sch_mtk_rrc_setup_crash_7.\

so

The current implementation targets OnePlus phones

specifically. To prepare the device for testing, you may

toggle airplane mode using the following command:

Disable airplane mode to trigger connection

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode disable

Enable airplane mode to drop connection

adb -s UWEUW4XG8XCA8PWS shell cmd connectivity \

airplane-mode enable

The core idea of these attacks is to transmit malformed

RLC or RRC Setup messages to the target UE. Upon

processing these malformed messages, the UE crashes

immediately. Full details of these exploits are avail-

able on the official 5Ghoul disclosure page: https:

//asset-group.github.io/disclosures/5ghoul/

To verify whether an attack has succeeded, monitor the

device logs using logcat. Specifically, look for crash-

related keywords such as sModemReason. Open a new

terminal and run the following command to begin moni-

toring:

Clear existing logcat logs

adb -s UWEUW4XG8XCA8PWS logcat -c

Monitor logcat logs

adb -s UWEUW4XG8XCA8PWS logcat -b radio,crash,system,\

main | grep sModemReason

https://asset-group.github.io/disclosures/5ghoul/
https://asset-group.github.io/disclosures/5ghoul/

module = modules/lib_mac_sch_mtk_rlc_crash.so

07-04 10:51:37.365 1622 2198 D \

MDMKernelUeventObserver: sModemReason:fid:457077\

782;cause:[Fatal error(MPU_NOT_ALLOW)] err_code1\

:0x0000001D err_code2:0x910D66F6 err_code3:0x910\

D66E2 CaDeFa Supported

module = modules/lib_mac_sch_mtk_rrc_setup_crash_3.\

so

07-04 11:04:51.807 1622 2198 D \

MDMKernelUeventObserver: sModemReason:fid:156734\

6682;cause:[ASSERT] file:mcu/l1/nl1/internal/md9\

7/src/rfd/nr_rfd_configdatabase.c line:4380 p1:0\

x00000001

module = modules/lib_mac_sch_mtk_rrc_setup_crash_4.\

so

07-04 11:06:50.880 1622 2198 D \

MDMKernelUeventObserver: sModemReason:fid:372552\

4241;cause:[ASSERT] file:mcu/l1/mml1/mml1_endc/\

src/mml1_endc_db_hdlr.c line:524 p1:0x91920c70

module = modules/lib_mac_sch_mtk_rrc_setup_crash_6.\

so

07-04 11:09:46.846 1622 2198 D \

MDMKernelUeventObserver: sModemReason:fid:105190\

3049;cause:[ASSERT] file:mcu/l1/nl1/internal/md9\

7/src/ctrl/nr_ctrl_mgm.c line:16460 p1:0x0000000\

0

module = modules/lib_mac_sch_mtk_rrc_setup_crash_7.\

so

07-04 11:10:42.422 1622 2198 D \

MDMKernelUeventObserver: sModemReason:fid:100627\

7484;cause:(MSONIC0) [ASSERT] file:dsp3/\

coresonic/msonic/modem/brp/nr/nr_brp/src/\

nr_brp_top_irq.c line:927

If the attack is successful, you will observe crash indi-

cators, including the sModemReason keyword, as shown

in Figure 23 and Figure 24. A large number of red er-

ror messages may appear, and the SNI5GECT tool itself

may crash—this is expected behavior. Since SNI5GECT

also receives the malformed RRC Setup message it gen-

erates, it may attempt to decode and apply the invalid

configuration.

Please note: after a successful attack, the UE’s modem

will crash and may not reconnect to the base station

immediately. Recovery typically requires either a wait-

ing period (e.g., one minute) or manually rebooting the

device to restore 5G connectivity.

5G AKA Bypass Attack: This attack is implemented

in the lib_plaintext_registration_accept.so at-

tack module, located in the modules folder. It is currently

applicable only to the Pixel phone in our testbed. Please

use the following command to toggle airplane mode on

the Pixel device:

Disable airplane mode to trigger connection

adb -s 27211FDH20096Z shell cmd connectivity \

airplane-mode disable

Enable airplane mode to drop connection

adb -s 27211FDH20096Z shell cmd connectivity \

airplane-mode enable

Figure 23: MTK RLC Crash

Figure 24: MTK RRC Setup Crash

The core logic of the attack is as follows: after

the UE transmits a Registration Request message,

SNI5GECT injects a Registration Accept message.

Upon accepting this message, the victim UE responds

with Registration Complete and a PDU Session

Establishment Request. Since the core network re-

ceives these unexpected messages, it instructs the gNB to

release the connection by sending an RRC Release mes-

sage, thereby immediately terminating the connection.

We can observe the aforementioned process in Figure 25.

If messages such as Authentication Response or

Security Mode Complete are observed and the UE

proceeds with the connection, it indicates that the attack

has failed. Please toggle airplane mode to establish a

new connection and rerun the attack.

Evaluation results presented in the paper: The eval-

uation result presented in the paper is stored in the fol-

lowing structure in:

/root/evaluation_results/sni5gect_5g_attacks

Figure 25: 5G AKA Bypass Example output

Organized as <phone>_<base_station>/<exploit>_<\

distance>m

.

|-- 5Ghoul_srsran

| |-- mtk_rlc_crash

| |-- mtk_rrc_setup_crash_3

| |-- mtk_rrc_setup_crash_4

| |-- mtk_rrc_setup_crash_6

| |-- mtk_rrc_setup_crash_7

|-- 5Ghoul_effnet

|-- oneplus_srsran

| |-- authentication_replay_0m

| |-- authentication_replay_1m

| |-- identity_request_0m

| |-- identity_request_1m

| |-- registration_reject_0m

| |-- registration_reject_1m

|-- oneplus_effnet

| |-- authentication_replay_0m

| |-- authentication_replay_1m

| |-- identity_request_0m

| |-- identity_request_1m

| |-- registration_reject_0m

| |-- registration_reject_1m

|-- huawei_srsran

|-- huawei_effnet

|-- pixel_srsran

|-- pixel_effnet

|-- samsung_srsran

|-- samsung_effnet

|-- registration_accept

To generate the same table as presented in the paper,

please refer to the following command:

cd /root/evaluation_results

python3 sni5gect_5g_attacks/\

calculate_registration_reject_success_rate.py

Result CSV: identity_request_results.csv

python3 sni5gect_5g_attacks/\

calculate_registration_reject_success_rate.py

Result CSV: registration_reject_results.csv

python3 sni5gect_5g_attacks/\

calculate_authentication_replay_success_rate.py

Result CSV: authentication_request_results.csv

Figure 26 corresponds to Figure 7: Attack Success

Rates by Device, Distance, and Attack Type using

srsRAN as legitimate gNB and Figure 27 corresponds

to Figure 8: Attack Success Rates by Device, Distance,

and Attack Type using Effnet as legitimate gNB. To

plot these two figures, please refer to the following com-

mands:

cd /root/evaluation_results/sni5gect_5g_attacks

python3 update_attack_json_data.py

Format the data for plot

python3 plot_srsran_result.py

data_attack_success_rate_srsran.pdf

python3 plot_effnet_result.py

data_attack_success_rate_effnet.pdf

A.5 Notes on Reusability

SNI5GECT provides a tool for DCI sniffing, message sniffing

and message injection attacks. Additionally, this can be useful

in the following tasks:

1. Attack evaluation without rogue base station: Un-

like approaches that relies on a rogue base station that

is assumed to have man-in-the-middle capabilities, the

SNI5GECT framework enables evaluation of 5G attacks

by passively sniffing and stealthily injecting messages

into live sessions. This allows the researchers to evaluate

their attacks under more realistic conditions.

2. Throughput analysis: This can be done by utilizing

the steps shown in DCI sniffing evaluation. In particu-

lar, such an evaluation can provide the DCIs sent from

the base station to the UE, from which we can learn

the amount of traffics communicated between the base

station and the UE. This makes it useful for throughput

analysis over-the-air.

3. Traffic analysis: This can be accomplished by utilizing

the message sniffing capability shown in message sniff-

ing evaluation. For example, the user can analyze the

traffic between the base station and the UE, to research

on privacy tracking related topics.

4. Anomaly detection: This artifact provides a significant

amount of PCAP from both the sniffer and the base

station during the message injection attacks. To the best

of our knowledge, this is the first open artifact providing

such dataset with over-the-air injection attacks. This can

be potentially used for anomaly detection tasks.

A.6 Version

Based on the LaTeX template for Artifact Evaluation

V20231005. Submission, reviewing and badging methodol-

Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro
0

10
20
30
40
50
60
70
80
90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

98.5

77.2

98.3

59.4 57.5

85.5
76.6

65.4

84.2
93.3

84.8

53.3

65.3

90.9
100.0

92.0

61.9 65.0

93.0

45.6

81.4 78.3

54.0 52.9

Registration Reject
Downgrade

Identity
Request

Auth. Req. Replay
Downgrade

Distance (m)
0
1

Figure 26: Attack Success Rates by Device, Distance, and Attack Type using srsRAN as legitimate gNB.

Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro
0

10
20
30
40
50
60
70
80
90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

92.0

75.7
82.6

42.4
50.0

68.9
65.3

79.6

46.5 46.5 47.1

75.0

61.4
55.6

94.7

61.8
65.8

84.2

65.6

52.3

43.9
50.0

57.5
50.5

Figure 27: Attack Success Rates by Device, Distance, and Attack Type using Effnet as legitimate gNB.

ogy followed for the evaluation of this artifact can be found at

https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to Access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Getting Started
	Installation (Optional)
	Basic Test of Radio Devices

	Evaluation workflow
	Major Claims
	Evaluation Steps
	Experiments

	Notes on Reusability
	Version

