ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Transparent Attested DNS for
Confidential Computing Services

Antoine Delignat-Lavaud
Azure Research, Microsoft

Manuel Costa
Azure Research, Microsoft

A Artifact Appendix

A.1 Abstract

Our artifacts consist mainly of an implementation of an au-
thoritative DNSSEC server that implements the attested DNS
protocol, as described in the paper, and a browser extension
that implements the client protocol.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our implementation of attested DNS is for research purposes
only. We do not recommend directly exposing our attested
DNS server to the public Internet, as it lacks some of the
recommended defenses against classical DNS-based attacks,
in particular DNS amplification attacks over UDP.

If you want to test our server over the public Internet (for
instance, to test client latency or the browser extension), con-
sider exposing it through Bind using a forwarder zone. We
provide a sample Bind configuration, see the README file
for details.

A.2.2 How to access

The version of attested DNS used in this paper is available
from https://doi.org/10.5281/zenodo.15611255. It is
based on the open source repository https://github.com/
microsoft/ccfdns - however, please note that the open
source repository has significantly diverged from the version
described in the paper. While the open source version is sig-
nificantly more up to date, it is missing several features that
are evaluated in the paper.

A.2.3 Hardware dependencies

Our artifacts requires Intel SGX capable hardware and must
run with DCAP (Data Center Attestation Primitives) attesta-
tion. EPID-based attestation is not supported. We have tested
our code on Azure Standard_DC*ds_v3 VMs, other cloud

Cédric Fournet
Azure Research, Microsoft

Sylvan Clebsch

Azure Research, Microsoft

Kapil Vaswani
Azure Research, Microsoft

Christoph M. Wintersteiger

Imandra

provides are expected to work but may require additional Ope-
nEnclave configuration steps that we do not provide. Refer
to the OpenEnclave manual for details on other platforms
(including non-cloud based setups and simulation mode).

A.2.4 Software dependencies

This version of attested DNS has been tested on Ubuntu
20.04. Our main dependencies are OpenEnclave (https:
//github.com/microsoft/openenclave), and the Con-
fidential Consortium Framework (https://github.com/
microsoft/CCF), but our artifact package includes compat-
ible versions. We use DNSPyre (https://github.com/
Tantalor93/dnspyre) for benchmarking our server.

A.2.5 Benchmarks

None.

A.3 Set-up

We assume you have downloaded the artifact package and
extracted it to your home directory ~/adns.

A3.1 Installation

We have automated the installation of dependencies using
an Ansible playbook. You can run the playbook with the
following commands:

cd ~/adns/CCF/getting_started/setup_vm
./run.sh app-dev.yml

This script will also install Ansible and its dependencies.
The next step is to install CCF:

cd ~/adns/CCF
sudo apt install ./ccf_sgx_5.0.0_devl2_amd64.deb

To build the aDNS server, you will also need LLVM 18,
which you can install with:

sudo apt install clang-18

https://doi.org/10.5281/zenodo.15611255
https://github.com/microsoft/ccfdns
https://github.com/microsoft/ccfdns
https://github.com/microsoft/openenclave
https://github.com/microsoft/openenclave
https://github.com/microsoft/CCF
https://github.com/microsoft/CCF
https://github.com/Tantalor93/dnspyre
https://github.com/Tantalor93/dnspyre

The next step is to build the aDNS enclave:

cd ~/adns/ccfdns
./build.sh

A.3.2 Basic Test

The main tool for testing our aDNS server is a script that
starts an instance of aDNS on port 5353 configured for the
zone service.confidential. The script also registers two
partifipating TEEs under sgx.service.confidential and
sev-snp.service.confidential. To simplify the evalua-
tion and avoid multiple hardware dependencies, these are not
live services but use pre-recorded attestation reports.

cd ~/adns/scripts
./run.sh

The process of starting the server involves the registration
of the two TEEs, the DNSSEC signature of the zone, and the
issuance of ACME certificates.

Testing SGX service registration...

SGX service registration completed in 176.34 ms
Testing registration policy update by consortium member

New policy set in 249.15 ms
Testing SEV-SNP service registration

SEV-SNP service registration completed in 156.80 ms
Testing re-signature of zone

Zone re-signature completed in 14.24 ms
Testing ACME certificate issuance through aDNS

ACME certificate returned: {"certificate":
Mo BEGIN CERTIFICATE-----
————— END CERTIFICATE-----\n"}

Certificate returned in 2.01 ms

The server will keep running until interrupted (stop it with
ctrl+c). Please note that the experiments below require the
server to be running. You can only run one single instance of
the server at a time.

For testing aDNS clients, note that the aDNS server
is itself a registered TEE of the zone, available at
https://nsl.service.confidential:8443. Note
that all ACME certificates use a local root CA in
~/adns/scripts/pebble.pem. You HTTPS client should
be configured to use that root CA when connecting to aDNS.
For instance, to see all the records configured in aDNS’s
zone, run the following command:

curl --cacert pebble.pem \
https://nsl.service.confidential:8443/app/dump

We need to install DNSPyre to measure the performance
of the aDNS zone:

sudo apt install \
~/adns/dnspyre_3.5.1_linux_amd64.deb

Next, we setup a local installation of the bind DNS server.
This will be used later to measure the scalability of aDNS
through Bind9, using its highly optimized cache.

cd ~/adns

sudo apt install bind9

sudo cp named.conf.* /etc/bind/
sudo service named restart

The packaged Bind configuration file will forward queries
to service.confidential to port 5353. You can check your
setup is correct with dig:

dig @127.0.0.1 _8443. tcp.nsl.service.confidential TLSA

If aDNS is running and well configured you should see the
DANE record:

;7 ANSWER SECTION:
_8443. tcp.nsl.service.confidential. 1440 IN TLSA
310 3076301006072A8648CE3D020106052B81. ..

Finally, to help test legacy client, we recommend you set
the local bind as your system resolver.

sudo cp resolved.conf /etc/systemd/
sudo service systemd-resolved restart

We will use the Firefox extension to measure client la-
tency using the browser networking profiler. If you have
configured bind as your system resolver, you can connect
to service.confidential directly, but if you plan to con-
nect from a remote client, you may need to setup a DoH
resolver with a custom certificate, which is not recommended
to do on a personal device.

sudo apt install tightvncserver firefox

To setup the extension, we recommend web-ext, which is
available on the Node Package Manager. Make sure Firefox
and Node.js are installed, for instance on Debian systems:

curl -fsSL https://deb.nodesource.com/setup_23.x \
-0 nodesource_setup.sh

sudo -E bash nodesource_setup.sh

sudo apt-get install -y nodejs

sudo npm install -g web-ext

Then from the extension directory, call web-ext to start a
browser session with the extension installed:

cd adns/extension
web-ext run

A.4 Evaluation workflow
A.4.1 Major Claims

We make two main claims in the paper

(C1): The impact of aDNS on the DNS serving infrastructure
is at worst 50%, that is, going from clients that only
check the A record of a service to clients that verify
DNSSEC and request the full attestation evidence from
DNS (worst case scenario) only impacts the throughput
of the authoritative server by about half.

(C2): aDNS clients that verify attestation at the same time as
the TLS handshake do not observe any additional latency
for typical client roundtrip times of about 25ms.

A.4.2 Experiments

(E1): [Server scalability] [40 human-minutes] We evalu-
ate the latency/throughput by submitting an increasing
amount of requests with dnspyre and measuring the P99
latency.

Preparation: Start the aDNS server with
scripts/run.sh and make sure your local bind
server is well configured.

Execution: We use the script scripts/latency.sh,
which accepts 4 arguments: the type of client to simu-
late (can be basic, dane or adns), the DNS server IP
(127.0.0.1 by default), its port (5353 by default) and
the number of queries in each measurement (by default
10000). For each 3 type of client, we run the script and
collect the reported Questions per second and p99
latency results. We first do this by accessing our aDNS
server directly (on port 5353), then through bind (on port
53):

./latency.sh basic

./latency.sh dane

./latency.sh adns

./latency.sh basic 127.0.0.1 53

./latency.sh dane 127.0.0.1 53

./latency.sh adns 127.0.0.1 53

Results: The results should roughly match the results
of Figure 4 and Figure 5. As we increase the number
of concurrent requests, the throughput and P99 latency
gradually increase. Bind is about 2 orders of magnitude
better than our own implementation. More importantly,
the maximum throughput achieved by aDNS clients is
about half that of basic clients.

(E2): [Client latency] [5 human-minutes]

Preparation: Start the aDNS server with
scripts/run.sh. To keep things simple, we as-
sume you will run Firefox on a machine configured to
use the locally configured bind as a system resolver.
For instance, use VNC to connect to the server where
aDNS is running and launch a Firefox session with the
extension using web-ext run.

Execution: Start the network profiler by going to the
Network tab of the developer tools (F12). Click the stop-
watch in the bottom left corner to start profiling. Nav-
igate to https://nsl.service.confidential: 8443
and measure the total latency (until the HTTP request is
sent). Disable the extension and repeat the experiment.
You can check the extension developer console to see
the details of the attestation verification happening in the
background.

Results: Unless you have very low RTT to the aDNS
server, the total latency should be the same with or with-
out aDNS.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://ns1.service.confidential:8443
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

