
USENIX Security ’25 Artifact Appendix: Unsafe LLM-Based Search:
Quantitative Analysis and Mitigation of Safety Risks in AI Web Search

Zeren Luo1* Zifan Peng1* Yule Liu1 Zhen Sun1 Mingchen Li1,2 Jingyi Zheng1 Xinlei He1†

1The Hong Kong University of Science and Technology (Guangzhou) 2University of North Texas

A Artifact Appendix

A.1 Abstract
This artifact encompasses the full implementation of our risk-
mitigation agent as detailed in “Unsafe LLM-Based Search:
Quantitative Analysis and Mitigation of Safety Risks in AI
Web Search”. It includes a prompt templates for content
refinement and malicious URL detection, the Python code
for constructing and operating the agent with options for an
XGBoost-Detector, PhishLLM-Detector, and our HtmlLLM-
Detector. Evaluators can utilize this artifact to refine AIPSEs’
output content using our designed chain-of-thought prompt
and classify URLs as benign or malicious using the above
three detectors. All code is provided, and executing the basic
tests confirms the proper functionality of each component.

A.2 Description & Requirements
This section lists all the information necessary to recreate the
experimental setup used to run our artifact. It covers minimal
hardware and software requirements, as well as access to our
artifact.

A.2.1 Security, Privacy, and Ethical Concerns

The artifact does not perform any destructive operations or
disable any security mechanisms on the evaluator’s machine.
It does make outbound HTTP(s) requests in two ways:

• LLM Calls to OpenAI. The is_malicious function
and the content-refinement tool both send content or
HTML snippets to OpenAI’s API. Evaluators must sup-
ply a valid OPENAI_API_KEY, and they should be aware
that all content sent to the LLM may be logged by Ope-
nAI. No personal or sensitive data beyond URLs should
be included.

• URL Fetches. When using the HtmlLLM-Detector vari-
ant (URL Detector 4), our code fetches remote pages
either via requests or via Selenium. Evaluators should

*Contributed equally and listed alphabetically.
†Corresponding author (xinleihe@hkust-gz.edu.cn).

be mindful that fetching arbitrary URLs can expose them
to potentially malicious or untrusted web pages. It is
recommended to run URL-fetching in an isolated envi-
ronment (e.g., a VM or container) if there is any concern
about downloading unknown content.

No private or human-identifiable information is requested
at any point. The code does not store or transmit any per-
sonal user data beyond what is strictly necessary for detecting
phishing, malware, or scam content (i.e., the URLs and HTML
code themselves). There are no ethical issues with running
the provided code, provided the evaluator does not deliber-
ately experiment on known malicious sites in an uncontrolled
environment without caution.

A.2.2 How to Access

We share our artifact via a DOI-archived link in Zenodo:
DOI: 10.5281/zenodo.15607878
URL: https://doi.org/10.5281/zenodo.15607878
The artifact includes all the defense code for our paper and

a readme.md file that details the structure and usage of our
defense method. We highly recommend verifying our code
through the readme.md file.

A.2.3 Hardware Dependencies

The artifact can be evaluated on any standard x86_64 (or
ARM64) machine running a recent Linux, macOS, or Win-
dows OS. No GPU is required unless the evaluator wishes to
accelerate the XGBoost model training for further experimen-
tation (but all pre-trained weights are provided). Selenium-
based crawling requires that a compatible Chrome/Chromium
version and the corresponding ChromeDriver are installed. In
summary:

• CPU: 64-bit processor (Intel/AMD/Apple Silicon)

• RAM: ≥ 4GB

• Disk: ≥ 5GB free for code and dependencies

mailto:xinleihe@hkust-gz.edu.cn
10.5281/zenodo.15607878
https://doi.org/10.5281/zenodo.15607878


A.2.4 Software Dependencies

Operating System:
Linux (Ubuntu 20.04+), macOS (10.15+), or Windows 10/11.
Language and Packages:

• Python 3.10+

• pip (Python Package Installer)

• Required Python Packages:

– openai

– langchain

– langchain-openai

– bs4

– python-whois

– pandas

– selenium

– requests

– xgboost

A.2.5 Benchmarks

None, we are sharing only the defense code, as we mentioned
in the open science section.

A.3 Set-up

A.3.1 Installation

1. Create a Python Virtual Environment (Recom-
mended):

conda create -n testenv python=3.10
conda activate testenv

2. Install All Python Dependencies:

pip install --upgrade pip
pip install -r requirements.txt

3. (Optional) Install ChromeDriver for Selenium
Download the ChromeDriver at https://developer.
chrome.com/docs/chromedriver/downloads

4. Set Environment Variables: Please see the readme.md
file, without a valid OPENAI_API_KEY, the LLM-based
detectors and the content-refinement tool will exit with
an error.

A.3.2 Basic Test

Please see the readme.md file to run the basic test, as the
content is not displayed clearly in LaTeX due to formatting
issues.

A.4 Evaluation Workflow

A.4.1 Major Claims

(C1): HtmlLLM-Detector achieves the highest F1 score
among the three detectors. This is demonstrated by the
experiment (E1) described in Section 8.2 of the paper,
with results illustrated in Table 2 and Table 3 of the
paper.

(C2): Agent-based defense achieves the highest successful
rate compared to Prompt-based defense. This is demon-
strated by the experiment (E2) described in Section 8.2
of the paper, with results illustrated in Table 2 of the
paper.

A.4.2 Experiments

(E1): Detectors comparison (45 human-minutes + 120
compute-hours (depend on network stability) + 335MB
disk):
Preparation: To conduct the comparison experiment,
the following steps are executed with precision. Ini-
tially, retrieve the essential files as a dataset for Phish-
LLM, as detailed in Section 6 of the paper, encom-
passing webpage screenshots, URLs, and HTML source
code, with each URL mapped to a distinct folder for
storage. Next, establish the experimental environment
for PhishLLM by following the guidelines provided
in the official repository at “https://github.com/code-
philia/PhishLLM”. Next, get the test data (Main risk-
inclusive response) in Section 6 of the paper.
Execution: Subsequently, execute the PhishLLM
method on the collected dataset to obtain results,
recording them in a CSV file; Concurrently, apply the
HtmlLLM-Detector method using the same dataset and
recording them in the same CSV file.
Results: Finally, implement the XGBoost-Detector
method through main.py and tools.py, generating out-
put in JSON format, to derive the confusion matrices for
all three detectors and compute the corresponding per-
formance metrics.

(E2): Agent-based and Prompt-based comparison (70 human-
minutes + 50 compute-hour (depend on network stabil-
ity) + 5MB disk):
Preparation: To conduct the comparison experiment,
the following steps are executed with precision. Get the
test data (Main risk-inclusive response) in Section 6 of
the paper.

https://developer.chrome.com/docs/chromedriver/downloads
https://developer.chrome.com/docs/chromedriver/downloads


Execution: Implement the Agent-based approach by ex-
ecuting the script main.py with the test data to produce
two JSON format files, employing HtmlLLM-Detector
and PhishLLM-Detector respectively. Furthermore, sepa-
rately run prompt_defense.py to evaluate the test data
and generate an additional JSON format file.
Results: Conduct manual verification by comparing
the two JSON format files generated from the Agent-
based method with the JSON format files produced by
the XGBboost-Detector in experiment E1, alongside the
JSON format file generated from independently testing
data with prompt_defense.py.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Version


