ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
How Transparent is Usable Privacy and Security Research?
A Meta-Study on Current Research Transparency Practices

c

Jan H. Klemmer Juliane Schmiiser

C

Jan-Ulrich Holtgrave Simon Lenau

c

C

Fabian Fischer ©€ Jacques Suray

Byron M. Lowens ©* Florian Schaub ®°

Sascha Fahl ©€

CCISPA Helmholtz Center for Information Security, Germany
*Indiana University Indianapolis, USA
TUniversity of Michigan, USA

A Artifact Appendix

A.1 Abstract

To support open science and transparency, we provide several
artifacts that accompany our paper. The artifacts contain the
data used for our analysis (including the raw analysis results,
as well as computed data like the transparency score), analysis
scripts to compute the transparency score, and results such
as tables and figures for the paper, and the R code for the
regression, as well as the generated outputs. Moreover, we
include the PDFs that detail the results of our sample size
estimation.

Please refer to the contained README . md for a more detailed
overview of which artifacts are contained in which folders
and files.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Except for installing dependencies, the software does not

receive/send Internet data. All computations are done locally.

The code does not execute any destructive steps. There are no

security, privacy, or ethical concerns or risks for the evaluators.

A.2.2 How to access

The artifacts are hosted at Zenodo and accessible via

the following link: https://doi.org/10.5281/zenodo.

15532982.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

The contained source code can be executed on any system
that fulfills the following requirements:

e Python with Poetry as dependency man-
ager (Python  dependencies are listed in
code/pyproject.toml). Poetry can be downloaded
here: https://python-poetry.org/.

¢ Docker (Installation:
engine/install/).

https://docs.docker.com/

A.2.5 Benchmarks

Our dataset with analysis results is contained in the artifacts
and does not need to be installed separately.

A.3 Set-up

Please confirm that the required software packages are in-
stalled on the system as stated above (i.e., Python, Poetry, and
Docker), before proceeding with the following steps.

A.3.1 Installation

1. Visit https://doi.org/10.5281/zenodo.15532982
and download the artifacts. Under the tab "Files" you
can choose to download the . zip file.

2. Unarchive the . zip file on your local computer.

3. Run the following commands to install Python depen-
dencies: cd code/ and poetry install

4. For the regression that we implemented in R, we are
using a Docker container. To build the docker container,


https://orcid.org/0000-0002-6994-7206
https://orcid.org/0000-0001-7830-6403
https://orcid.org/0009-0007-0358-6982
https://orcid.org/0009-0007-8595-3706
https://orcid.org/0009-0001-3703-9748
https://orcid.org/0009-0002-2765-105X
https://orcid.org/0009-0002-5518-5332
https://orcid.org/0000-0003-1039-7155
https://orcid.org/0000-0002-5644-3316
https://doi.org/10.5281/zenodo.15532982
https://doi.org/10.5281/zenodo.15532982
https://python-poetry.org/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://doi.org/10.5281/zenodo.15532982

execute the following commands: cd code/R/ and then
./build-container.sh.

A.3.2 Basic Test

* For the Python scripts: Open a shell (from the code/ di-
rectory) in the virtual environment with poetry shell.
Then execute jupyter notebook. This should open
Jupyter in your browser. (If that is not the case, you can
manually navigate your browser to http://localhost:
8888/). Try to open one of the notebooks (.ipynb).

e For the Docker container: docker run -it --rm
containr:latest /bin/bash (opens a shell).’

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Transparency Criteria Availability: For 52 trans-
parency criteria, we quantify the transparency in terms
of availability. On average, 65.0% = 11.2 of the papers’
applicable criteria are available (cf. Section 6.1); in total,
63.9% of all criteria were available, 5.2% partially avail-
able, and 30.9% unavailable. We present the detailed
availability for all 52 transparency criteria in Table 3.

(C2): Transparency Score: To assess the overall transparency
of papers, we calculate a transparency score (TS). The
TS per paper is on average 0.677 +0.103 (cf. Sec-
tion 6.3.2).

(C3): Regression: The exploratory regression on the TS re-
veals a significantly positive association of transparency
with a paper’s length and fewer methods. Most venues
do not differ significantly from the baseline (SOUPS).
The model indicates no significant relation with AE, a
paper’s primary method, and publication year. (Exact
results contained in Table 4 and Section 6.4.2.)

A.4.2 Experiments

(E1): [Transparency Analysis] [15 human-minutes +
0 compute-hour + <1GB disk]: Process the result dataset
obtained from the manual paper annotation and calculate
availabilities, transparency scores, etc.

Preparation: Open a shell (from the code/ directory)
in the virtual environment with poetry shell. Then
execute jupyter notebook. This should open Jupyter

'For Mac/Apple Silicon it might be necessary to setup emulation first.

Option A): Enable Emulation in Docker Desktop (should be enabled
by default): docker.desktop settings — general — virtual machine options.
Choose Apple Virtualization framework and activate Rosetta.

Option B): Set Platform Explicitly When Pulling or Running: If Docker
does not find an ARM version of an image, it may fail unless you explic-
itly request the amd64 version: docker run --platform linux/amd64
<image>

in your browser. (If that is not the case, you can manu-
ally try to navigate your browser to http://localhost:
8888/).

Execution: First, open transparency-score.ipynb
in Jupyter and execute all cells (“Run”, “Run All Cells”).
This will transform the raw annotation results stored
in transparency-analysis.tsv, calculate the trans-
parency score and store all results in results.tsv.
Next, open main.ipynb in Jupyter and execute all cells
(“Run”, “Run All Cells”). Based on results.tsv, this
notebook contains the actual analysis, e.g., to generate
some of the figures and tables.

Results: The overall availability (C1) is presented
in cells 19 and 20 of main.ipynb, and the table
written to output/tables/criteria.tex. The re-
sults of the transparency score (C2) are written to
data/result.tsv (column: “Transparency Score”),
and the descriptive statistics are in cell 10.

Apart from that, all computed numbers are also
stored (for usage in IATEX) as key-value-pairs in
numbers—generated.tex.

(E2): [Regression] [15 human-minutes + 30 compute-
minutes + 6GB disk]: Run the regression model (and
related other R code).

Preparation: Build the docker container as described
above.

Execution: Run docker run -it --rm -v
$ (pwd) /data:/data containr:latest /bin/bash
(from the code/ directory) to open a shell in the docker
container and mount your local data/ directory. Once
you entered the container environment, run . /main to
start the analysis.

Results: You can now retrieve all results in the data/
folder on your local machine (or inside the container at
/data). This also includes the regression table (C3).

A.5 Notes on Reusability

Our artifacts operate on the contained dataset. Therefore, the
code is reusable on other datasets containing transparency
analysis data (assuming that they are in the same format as
our dataset). For example, future work might analyze the
same transparency criteria, store the transparency analysis
data in a similar . tsv/.csv file, and run our code to compute
transparency scores.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


http://localhost:8888/
http://localhost:8888/
http://localhost:8888/
http://localhost:8888/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


