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A Artifact Appendix

A.1 Abstract
We survey literature on automated detection of misinforma-
tion across a corpus of 248 well-cited papers in the field.
We then examine subsets of papers for data and code avail-
ability, design missteps, reproducibility, and generalizability.
Our paper corpus includes published work in security, nat-
ural language processing, and computational social science.
We demonstrate the limitations of current detection methods
in a series of three representative replication studies: these
replications can be found in sections 5.1, 5.2, and 5.3 of the
paper, and address article-, user-, and website-scoped misin-
formation detection, respectively. The paper artifact contains
code and datasets for reproducing the results found in these
replication sections

A.2 Description & Requirements
No special setup required beyond access to recent versions
of Python (3.10 or later) and IPython (7.16 or later). All
Python library requirements are specified in the accompany-
ing requirements.txt file in the root directory.

A.2.1 Security, privacy, and ethical concerns

We anticipate no risks to evaluators as a result of code execu-
tion.

A.2.2 How to access

For purposes of evaluation, code and data are available
at https://github.com/citp/sok_misinformation and
https://zenodo.org/records/15613696.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Python 3.10 (or later) required to run pyscripts and a Jupyter
notebook. All Python library requirements are specified in the
accompanying requirements.txt file in the root directory.

A.2.5 Benchmarks

Datasets required for each test are described within the rel-
evant directory in the replications repository. These include
the FAKES and ISOT datasets used in the article-level repli-
cation, the troll and non-troll datasets used in the user-level
replication, and the EMNLP datasets used in the website-level
replication. All are included in the replications archive.

A.3 Set-up
No special setup required beyond access to recent versions of
Python (3.10 or later) and IPython (7.16 or later).

A.3.1 Installation

Evaluators working from the Git repository should addition-
ally download the articles_data.zip archive linked in the
git repository; package requirements are included in each
pyscript where necessary.

A.3.2 Basic Test

Evaluator may run python CNN_revised.py
-test_source nytimes -rand_seed 0 within the
articles directory to observe evaluation of a small test
dataset in advance of completing all 30 test cases. Output
will include accuracy and error reporting.

To observe the evaluation of a small test dataset
used in the website-level replication tests, evaluator
may run python3 train_artifact.py -tk fact -f
articles_body_glove,articles_title_glove -sb
small within the websites directory. Output will include
accuracy and error reporting.

A.4 Evaluation workflow
We include summaries of high-level results in the following
subsection; detailed discussion of these points can be found
in section 5 of the manuscript.

A.4.1 Major Claims

(C1): Article-level detection methods are susceptible to
text dependencies resulting from authorship, style, and

https://github.com/citp/sok_misinformation
https://zenodo.org/records/15613696


source. We demonstrate this through a series of analyses
on datasets whose credible/factual texts are sourced from
a reputable news agency (Reuters). We find that altering
the semantic content of news articles without altering the
style of those articles induces no change in the ultimate
classification of those articles, suggesting that there is
1) no semantic understanding of news article contents
during classification, and 2) style signals likely override
any other semantic signals.

(C2): User-scoped detection tasks are frequently tautological,
and proceed from known lists of troll users. These clas-
sifiers can only detect users who very closely resemble
users who were manually identified as trolls, oftentimes
using data not included in available training sets.

(C3): Website-scoped detection tasks purport to leverage
multimodal feature sets—including infrastructural, tex-
tual, and social media data—but the performance of these
methods is often overdetermined by features derived
from website text semantics (and, as such, the classifier
we evaluate is approximately as accurate as a text-only
classifier, and is susceptible to the same dependencies
we discuss in C1).

A.4.2 Experiments

Articles. See Table 2 for results of a replication analyses of the
ISOT, FA-KES, and NYTimes and Reuters datasets. The orig-
inal paper, which presents results on the ISOT and FA-KES
datasets, can be found here: https://www.researchgate.
net/publication/348379370_Fake_news_detection_
A_hybrid_CNN-RNN_based_deep_learning_approach.

In the articles directory of the main replications reposi-
tory, execute ./run.sh to run 30 iterations of the model (with
prespecified random seeds) on 1) ISOT and FAKES datasets
used in the original paper and 2) original and modified datasets
we developed for purposes of robustness testing. With multi-
threading (four cores, each running a separate instance of the
model with the same seed and a different dataset), this script
runs in about 7.5 hours.

Users. See Figure 4 for the results of a partial depen-
dence analysis on TrollMagnifier data. The original pa-
per can be found here: https://arxiv.org/pdf/2112.
00443. The Jupyter notebook containing code to train
and run the classifier and create these PDP plots is
trollmagnifier_pdp_artifact.ipynb. Instructions for
use are included in the notebook.

Websites. See Table 4 in Appendix D for the results
of ablation analyses on an EMNLP dataset for this paper:
https://aclanthology.org/D18-1389.pdf. To run all
tests, execute the bashscript contained in the websites direc-
tory using ./run.sh.

A text header appears at the start of each test case (e.g.
“fact, full corpus, all features”) denoting 1) the classification
task (factuality or bias classification), 2) the corpus to be

used (these vary by size (full, medium, small), or are stratified
by bias (left, center, right), or credibility (low, mixed, high)),
and 3) the feature set. Feature sets are printed to the console
at runtime. Extraction code for features is included in the
features directory. You can additionally inspect feature sets
and function calls in the ‘run.sh’ bashscript.

Accuracy, MAE, and F1 scores are reported for each test.
To compare these results to those found in Table 4, read each
table row horizontally, matching accuracy scores to those
reported on the console. Hold-one-out analyses are denoted
by (-) in the feature set labels (e.g., “articles(-)” denotes all
features excluding those relating to article contents and title).
Evaluation of specific feature sets are denoted by (+) (e.g.,
“articles” denotes only those features derived from article
contents and title). With the same hardware specs reported
previously, the full script runs in about 70 minutes.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.
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