
USENIX Security ’25 Artifact Appendix: Tady: A Neural Disassembler without
Structural Constraint Violations

Siliang Qin1,2, Fengrui Yang3, Hao Wang3, Bolun Zhang1,2, Zeyu Gao 3, Chao Zhang 3, Kai Chen 1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Tsinghua University, China
{qinsiliang, zhangbolun, chenkai}@iie.ac.cn

{yangfr23, hao-wang20, gaozy22}@mails.tsinghua.edu.cn, chaoz@tsinghua.edu.cn

A Artifact Appendix

A.1 Abstract

The artifact, Tady, is a novel neural network-based disas-
sembler designed to address structural constraint violations
commonly found in the output of existing disassemblers. It
consists of a neural model with a hybrid local-global atten-
tion mechanism to better understand code context and a post-
processing algorithm that uses a Post-Dominator Tree (PDT)
to enforce structural consistency. The artifact includes the
source code for the Tady model, the PDT-based error detection
and pruning algorithms, evaluation scripts, and the datasets
used in the paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

All analyzed binaries are sourced from public academic
datasets. There are no destructive steps, and the artifact does
not require elevated privileges or disabling of security mech-
anisms. The research follows the principles of the Menlo
Report and USENIX Security’s ethical guidelines. The dual-
use potential is acknowledged, but the focus is on advancing
defensive binary analysis capabilities.

A.2.2 How to access

The artifact is publicly available under an open-source license.
A snapshot of the evaluated version is permanently archived
on Zenodo with the DOI: 10.5281/zenodo.15541311, which
can be accessed from https://doi.org/10.5281/zenodo.
15541311. The latest version of the source code is maintained
and updated at the following GitHub repository: https://
github.com/5c4lar/tady, where the commit 014cd1d is
used for artifact evaluation.

A.2.3 Hardware dependencies

The experiments were conducted on a machine with the fol-
lowing specifications:

• CPU: Intel Core i9-12900K

• GPU: NVIDIA RTX A6000 Ada generation (A GPU is
required for model training and inference)

• RAM: 64GB

• Storage: 1TB NVMe SSD

A machine with similar or better specifications is recom-
mended for reproducing the results in a timely manner. Since
the intermediate results generated for the datasets can get
large, we recommend at least 256GB storage are available
before reproducing the results. Machine with NVIDIA GPUs
other then this specific model should also work smoothly.

A.2.4 Software dependencies

The artifact can be run on host or within a Docker container.

• Operating System: Ubuntu 24.04.

• Core Dependencies:

– C++ toolchain (build-essential)

– LLVM 18 (llvm-dev)

– Boost Graph Library (libboost-graph-dev)

– Python 3 development headers (libpython3-dev)

• Python Environment: Managed via uv. Key packages
include Flax, JAX, TensorFlow, NumPy.

• Baselines: Reproducing baseline results requires in-
stalling IDA Pro (v9.1), Ghidra (v11.3.2), ddisasm
(v1.9.0), DeepDi, and XDA, each with its own specific
environment (e.g., conda for XDA).

https://doi.org/10.5281/zenodo.15541311
https://doi.org/10.5281/zenodo.15541311
https://github.com/5c4lar/tady
https://github.com/5c4lar/tady

• Docker: A Dockerfile is provided to build a container
with all necessary dependencies for Tady.

The README.md file provides detailed instructions for set-
ting up both host and Docker environments. The artifact in-
clude the disassembly results of the baselines, which can be
used if the baseline software itself is not accessible.

A.2.5 Benchmarks

The evaluation uses several public and custom datasets, all of
which are provided and can be generated with the artifact’s
scripts. The primary datasets are:

• Pangine: Binaries compiled with various compilers and
optimizations, with labels extracted during compilation.

• Assemblage: Open-source Windows programs.

• x86-sok: Linux binaries, including both common utils
and other more complex applications.

• rw: Real-World dataset created following the DeepDi
protocol using x86-sok’s toolchain.

• quarks: Binaries obfuscated with Tigress and OLLVM
under various obfuscation settings.

• obf-benchmark: 11 binaries obfuscated with binobf.

The artifact provides scripts to download, preprocess, and for-
mat these datasets. Pre-processed datasets are also available
for download to expedite evaluation.

A.3 Set-up

A.3.1 Installation

The following steps describe the installation process using
the provided Docker environment.

1. Use the tady-main.zip from zenodo of clone the
artifact repository:
git clone https://github.com/5c4lar/tady.git
&& cd tady

2. Build the Docker image:
docker build -t tady -f docker/Dockerfile .

3. Download and extract the pre-processed datasets, base-
lines’ results and trained models. The artifact pro-
vides the datasets with bin.tar.gz and gt_npz.tar.gz.
This avoids the lengthy process of generating
datasets from scratch. Baselines’ results are given in
eval_strip_baselines.tar.gz. The models are provided in
models.tar.gz.

tar -xzvf bin.tar.gz -C data
tar -xzvf gt_npz.tar.gz -C data
tar -xzvf eval_strip_baselines.tar.gz \
-C data
tar -xzvf models.tar.gz

At this point, the environment is ready for evaluation.

A.3.2 Basic Test

To verify the installation, run a simple disassembly test on a
the VMProtect obfuscated binary in appendix. This test will
use the Tady model to disassemble a file and then run the
pruning algorithm on the output, For evaluation purpose, the
ground-truth is used to evaluate the accuracy after pruning.

1. Start the tensorflow serving on the host:

docker run --rm --gpus device=0 \
-p 8500:8500 \
-v $PWD/models/tf_models:/models -t \
--name tensorflow-serving \
tensorflow/serving:latest-gpu \
--xla_gpu_compilation_enabled=true \
--enable_batching=true \
--batching_parameters_file=\
/models/batching.conf \
--model_config_file=/models/model.conf

2. Enter the Tady docker container (if using Docker).

3. Run the evaluation script on a single file:

uv run -m tady.infer \
--path data/obf/TestApp.vmp.exe \
--model instruction_cpp_pangine_\
lite_all_64lw_64rw_16h_2l_prev000 \
--section_name .vmp0 \
--output_path \
data/obf/tady/TestApp.vmp.exe.npz \
--seq_len 569038 --batch_size 1

4. Run the pruning script on the result:

uv run -m tady.prune \
--gt data/obf/TestApp.vmp.exe.npz \
--pred data/obf/tady/TestApp.vmp.exe.npz

A successful run will produce a numpy file at
data/obf/tady/TestApp.vmp.exe.npz, containing
the disassembly results. The tady.prune script will show
the precision, recall, F1 score, false positives, false in the
console. The first run of the tady.infer will be slower than the
following runs because of tensorflow-serving’s warmup.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Tady’s model achieves high instruction-level accuracy
(Precision, Recall, F1 score), outperforming or perform-
ing competitively with state-of-the-art disassemblers on
standard and obfuscated benchmarks. This is proven by
experiment (E1), with results in Table 3 of the paper.

(C2): Tady’s post-processing pruning algorithm effectively
eliminates all detected structural constraint violations
from the model’s output, improving consistency while
maintaining or improving F1 score. This is proven by
experimen (E1), with results in Tables 3.

(C3): Existing disassemblers, including rule-based tools and
neural models, frequently produce outputs with struc-
tural constraint violations, and these violations are exac-
erbated by obfuscation. Tady’s algorithm can systemati-
cally detect these errors. This is proven by experiment
(E2), with results in Tables 1 and 2 of the paper.

(C4): The entire Tady workflow is highly efficient, with time
usage scaling linearly with the size of the input binary.
This is proven by experiment (E3), with results in Figures
8, 9, 10, and 11.

(C5): The novel components of Tady’s model, specifically
the Masked Sliding Window Attention (MSWA) and
Message Passing (MP), are critical to its performance.
This is proven with the results of experiments (E1, E2),
with results in Tables 4 and 5.

A.4.2 Experiments

Before measuring the results, follow the instructions
in the Eval.Tady section in the README to generate
the disassembly of Tady. The variants in the ablation
study correspond to the combinations of configurations:
attention=lite,sliding connections=none,all.
Sample outputs can be found in artifacts.tar.gz.
(E1): Pruning and Accuracy Evaluation [30 minutes]: This

experiment runs the pruning algorithm on all disassem-
bly results and evaluates the F1 score, precision, and
recall before and after pruning.
Preparation: Ensure all the disassembly results are
available either by downloading from the artifacts or
reproduced according to the README.
Execution: Run the following scripts.
uv run scripts/experiments/prune.py -m \
test_dataset=obf-benchmark,rw,x86_dataset,\
pangine,quarks,assemblage \
process=24 num_samples=1000
uv run scripts/experiments/collect_stat.py
uv run scripts/experiments/prune.py -m \
test_dataset=obf-benchmark,rw,x86_dataset,\
pangine,quarks,assemblage process=24 \
models="[gt]"

Results: data/prune/all_prune_result.json.
The data in this file can be used to reproduce the
accuracy results in Table 3 and Table 5, validating
claims C1, C2 and C5.

(E2): Detecting Constraint Violations [30 minutes]: This
experiment runs Tady’s error detection algorithm over
the outputs of various disassemblers (Tady, baselines)
and dataset labels across all benchmarks.
Preparation: Ensure E1 has been completed and the
intermediate results in data/prune are available. The
errors are already detected in our pruning scripts.
Execution: Run the error statistics collection script.
This script aggregate the error detection results.
uv run scripts/experiments/error_stat.py
Results: data/error_stat.json, which contains the
aggregated data used to generate Tables 1, 2, and 4 in
the paper. This validates claim C3, C5.

(E3): Efficiency Benchmark [2 hours]: This experiment
measures the runtime and memory usage of Tady. The
time is mainly spent on slow baselines on large binaries.
Preparation: Environments to run the disassemblers.
Execution: Please follow the Efficiency section in
README for instructions about this evaluation.
Results: Data of Figures 8, 9, 10, and 11, validating
claim C4. The figures can be reproduced with the script
scripts/ablation/generate_uniform_plots.py
with the provided data in argifacts.tar.gz.

A.5 Notes on Reusability
The artifact is designed for reusability. Beyond reproducing
the paper’s results, it can be extended in several ways:

• Applying to New Binaries: The Tady inference pipeline
(tady.infer) can be used to disassemble new, unseen
x86/x86-64 binaries. The README provides an exam-
ple of this in the VMProtect evaluation.

• Training on New Datasets: The training pipeline
(scripts/experiments/train.py) can be adapted to train
the Tady model on new, custom-labeled disassembly
datasets. The data preprocessing scripts show how to
convert ground truth into the required format.

• Applying to other disassemblers The error detection
and pruning algorithms can be applied to other disas-
sembly results. Examples on how to use the code can be
found in the evaluation scripts.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

