
USENIX Security ’25 Artifact Appendix: Rowhammer-Based Trojan
Injection: One Bit Flip Is Sufficient for Backdooring DNNs

Xiang Li
George Mason University

Ying Meng
George Mason University

Junming Chen
George Mason University

Lannan Luo
George Mason University

Qiang Zeng*

George Mason University

A Artifact Appendix

This artifact demonstrates a novel inference-stage backdoor at-
tack, ONEFLIP, which injects a backdoor into a full-precision
model via a single bit flip. ONEFLIP achieves high attack
success rates while causing minimal degradation to benign
accuracy. Our work reveals a critical hardware-based vulnera-
bility in DNNs: a highly effective backdoor can be injected
into a full-precision model through a single bit flip.

A.1 Abstract
ONEFLIP consists of two stages: an offline stage and an on-
line stage. The artifact includes all components required to
reproduce the offline stage, which is sufficient to validate our
results and verify our findings. For the online stage, we adopt
the Rowhammer implementation from Blacksmith 1. As our
work does not introduce any new Rowhammer attack vectors,
no additional disclosure is required.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact does not pose any risks to the evaluators’ machine
security, data privacy, or raise ethical concerns.

A.2.2 How to access

The artifact is publicly available on Zenodo at https://doi.
org/10.5281/zenodo.15609595 to support replication. It
includes detailed instructions for installation and execution,
as well as examples of victim models and models backdoored
by ONEFLIP.

A.2.3 Hardware dependencies

ONEFLIP is implemented on the NVIDIA H100 NVL GPU
platform. We recommend using an NVIDIA GPU with CUDA

*Corresponding author.
1https://github.com/comsec-group/blacksmith

support. However, a CPU-only environment can also suffice
for reproducing key results.

A.2.4 Software dependencies

The software environment requires Python with the following
packages: PyTorch, torchvision, pandas, and numpy.

A.2.5 Benchmarks

ONEFLIP is evaluated on four widely used datasets: CIFAR-
10, CIFAR-100, GTSRB, and ImageNet. Then, we choose
popular DNN architectures for image classification tasks for
the datasets. For CIFAR-10, we adopt ResNet-18; For GT-
SRB, we adopt VGG-16; For CIFAR-100, we adopt PreAct-
ResNet-18; and for ImageNet, we adopt ViT-base-16.

A.3 Set-up

We provide detailed steps to replicate our work in the
README file. We recommend that evaluators refer to these
materials for a better replication experience.

A.3.1 Installation

The artifact provides a requirements.txt file listing all
necessary software packages and version information. The
evaluators can create a new virtual Python environment and
install the software dependencies:

pip install -r requirements.txt

A.3.2 Basic Test

Navigate to the artifact’s main directory and execute the fol-
lowing command to run a basic test:

python test_attack_performance.py \
-dataset CIFAR10 \
-backbone resnet

https://doi.org/10.5281/zenodo.15609595
https://doi.org/10.5281/zenodo.15609595
https://github.com/comsec-group/blacksmith


A.4 Evaluation workflow

A.4.1 Major Claims

Here are the major claims made in our paper.
(C1): ONEFLIP enables one-bit-flip backdoor injection with

high attack success rate (ASR) and minimal benign ac-
curacy degradation (BAD). We use E1 to verify C1. We
provide a clean ResNet-18 trained on CIFAR-10, and
one representative ONEFLIP-backdoored model for di-
rect evaluation.

(C2): ONEFLIP can generate multiple backdoored model
variants from a clean model, each achieving high ASR
and minimal BAD. We use E2 to verify C2. We take
CIFAR-10/ResNet-18 as the representative combination
to verify the experimental results in Section 6.3 and
Table 3 of the main paper: ONEFLIP achieves state-of-
the-art attack performance, reaching an ASR of 99.96%
and a BAD of 0.01% with a single bit flip on CIFAR-
10/ResNet-18.

A.4.2 Experiments

(E1): [ONEFLIP’s capability of injecting backdoors via one-
bit flip] [5 human-minutes + 5 compute-minutes + 5GB
GPU memory]
Preparation: Ensure all dependencies listed in
requirements.txt are installed. Then navigate to the
main directory of the artifact.
Execution: Run the following command to evaluate
ONEFLIP on the clean ResNet-18 trained on CIFAR-10
and one representative backdoored model we provide;
the provided models are already placed in the corre-
sponding directory:
python test_attack_performance.py \

-dataset CIFAR10 \
-backbone resnet

Results: The terminal will first display the benign ac-
curacy (BA) of the original (clean) ResNet-18 model
on the CIFAR-10 test set, which is expected to be ap-
proximately 86.43%. It will then show the selected
flipped weight value at position (58,6) in the classifi-
cation layer, before and after the bit flip, along with
their corresponding 32-bit IEEE-754 binary representa-
tions (from 0 01111011 10110101000110001011000
to 0 01111111 10110101000110001011000). Finally,
it will print the BA of the backdoored model (expected
to be approximately 86.40%) and the ASR (expected
to be 100%), on the CIFAR-10 test set. These results
confirm that ONEFLIP can inject a backdoor via a single
bit flip with high ASR and minimal BAD.

(E2): [ONEFLIP’s attack performance on CIFAR-10/ResNet-
18 combination] [10 human-minutes + 2 compute-hours
+ 15GB GPU memory]:

Preparation: Ensure all dependencies listed in
requirements.txt are installed. Then navigate to the
main directory of the artifact.
Execution: Run the backdoor injection command to
generate multiple ONEFLIP-backdoored variants from
the provided clean ResNet-18 trained on CIFAR-10:
python inject_backdoor.py \

-dataset CIFAR10 \
-backbone resnet

All backdoored models generated by ONEFLIP
will be saved to: saved_model/resnet_CIFAR10/
backdoored_models/clean_model_1/ for further
evaluation. The filenames indicate the location of the
one-bit flip, as well as the BA and ASR on the first batch
of the CIFAR-10 test set (used as the attacker’s clean
sample set).
Next, run the following evaluation command to assess
ONEFLIP’s attack performance across all backdoored
variants:
python test_attack_performance.py \

-dataset CIFAR10 \
-backbone resnet

Results: When running inject_backdoor.py, the
program will first identify all eligible weights and filter
them using the degrad_threshold to construct the poten-
tial weight set, as detailed in Section 5.3 and Algorithm
1 of the main paper.
Next, compute the neuron set based on the potential
weight set, as all weights that share the same neuron
in the feature layer can use the same trigger. For each
neuron in this set, optimize a corresponding trigger pat-
tern and report the mean output value of the neuron on
the first batch of the CIFAR-10 test set embedded with
the optimized trigger. Finally, evaluate the ASR on the
same batch. Based on the attack_threshold parameter,
all valid backdoored variants are filtered and saved. This
procedure is detailed in Section 5.4 and Algorithm 2 of
the main paper.
When running test_attack_performance.py, the ter-
minal will first report the BA of the original (clean)
ResNet-18 model on the CIFAR-10 test set, expected
to be approximately 86.43%. Then, for each backdoored
variant, it will output the bit-flip details, including the
weight value and its corresponding 32-bit IEEE-754 bi-
nary representation before and after the bit flip, along
with the BA and the ASR on the CIFAR-10 test set.
All results are saved in a .csv file. A Python file
process_results.py is provided to process this .csv
file:
python process_results.py \

-dataset CIFAR10 \
-backbone resnet



The terminal will report the average BAD caused by
ONEFLIP (expected to be approximately 0.01%) and the
average ASR (expected to be approximately 99.96%).
The results can verify the experimental results we pro-
vide in Section 6.3 and Table 3 of the main paper: ONE-
FLIP achieves state-of-the-art attack performance, reach-
ing an ASR of 99.96% and a BAD of 0.01% with a single
bit flip on CIFAR-10/ResNet-18.

A.5 Notes on Reusability
We believe ONEFLIP can be generalized to more
dataset/model combinations and broader classification tasks.
Specifically, the user needs to locate an eligible weight in the
classification layer of the target model. Then, by obtaining
the output of the last feature layer (e.g., via a hook function),
the user can optimize a trigger to increase the output value
of the neuron connected to the selected weight. Finally, by
following the procedure described in Section 5.5 of the main
paper to activate the backdoor, the attack can be successfully
executed.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


