ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Relocate-Vote: Using Sparsity
Information to Exploit Ciphertext Side-Channels

Yuqin Yan', Wei Huangﬁ, Ilya Grishchenko, Gururaj Saileshwar', Aastha Mehta*, and David Lie’

TUniversity of Toronto, *Seneca Polytechnic, *University of British Columbia
yugin.yan@mail.utoronto.ca, wei.huang1 @senecapolytechnic.ca, gururaj@cs.toronto.edu,
aasthakm@cs.ubc.ca, {ilya.grishchenko,david.lie } @utoronto.ca

A Artifact Appendix

A.1 Abstract

This artifact includes the source code, scripts, and datasets
used to support the main claims, figures, and tables presented
in the paper. The paper demonstrates how a malicious hyper-
visor can infer sparsity patterns in the memory of victim con-
fidential Virtual Machines (CVMs) protected by AMD SEV-
SNP. This is accomplished by identifying encrypted memory
blocks that contain either prevalent or non-prevalent values,
exploiting ciphertext side channels via the SNP_PAGE_MOVE
command—designed initially for resource management.

At a high level, the artifact provides: (1) a malicious hy-
pervisor implemented as part of a modified Linux kernel, (2)
code simulating the behavior of a victim CVM, (3) monitor-
ing logic used by the hypervisor to observe the victim through
controlled channels and ciphertext side channels, and (4) anal-
ysis tools to recover and evaluate sparsity information from
the victim’s memory.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact is based on a modified kernel implementation,
SEV-Step. Both the original version and our implementation
prioritize the functionality of attack primitives over kernel
stability. As a result, the system may experience unpredictable
behavior, including kernel crashes, instability, and unrespon-
siveness. WARNING: This artifact is intended strictly for
research and evaluation purposes. Do not use it in produc-
tion environments.
Known limitations and usage guidelines:
- Do not run multiple VMs simultaneously.
- Do not assign multiple cores to a single VM, which may
prevent the VM from booting.
- Avoid forcefully terminating an evaluation program, which
may cause system issues.

- The CVMs cannot be correctly shut down sometimes.
Specifically, you cannot terminate a running CVM by
either Ctrl-C in the terminal with the “login” prompt
or pkill. If this happens, you need to reboot the host
machine.

A.2.2 How to access

The artifact is available at Zenodo via the following concept
DOI: https://doi.org/10.5281/zenodo.15609905.

A.2.3 Hardware dependencies

The evaluation of the attack primitive leveraging the
SNP_PAGE_MOVE command is conducted on AMD SEV-SNP
platforms. Since AMD fixed an implementation bug in
firmware version 1.55 (build 20), our evaluation requires
firmware version 1.55.20 or later for efficient page reloca-
tion.

A.2.4 Software dependencies

The host platform is running Ubuntu 24.04.1 LTS.
Environments supporting pip install. Examples of
such environments are Anaconda and python-venv. Re-
cently, pip install in the native, raw environment was pro-
hibited due to PEP 668—Marking Python base environments
as “‘externally managed”.

Blender. Blender is used to manually assemble and visualize
the pieces leaked from the OpenVDB operations performed
by the victim. The installation instructions can be found at
https://www.blender.org/download/.

A.2.5 Benchmarks

Dataset. We rely on the external dataset, CQ500. Although
it is externally available at https://www.kaggle.com
/datasets/crawford/qureai-headct, we have in-
cluded the necessary components in our artifact package un-
der openvdb-leak/data/qureai-headct/ to ensure long-

https://doi.org/10.5281/zenodo.15609905
https://www.blender.org/download/
https://www.kaggle.com/datasets/crawford/qureai-headct
https://www.kaggle.com/datasets/crawford/qureai-headct

term accessibility. The distribution complies with the original
license, CC BY-NC-SA 4.0. Both the license file (LICENSE)
and a corresponding README .md are provided in the directory.
Weights of Large Language Model (LLM). Our experi-
ments relied on the weights of ReLULlama-13b, available
at https://huggingface.co/PowerInfer/RelulLLaM
A-13B-PowerInfer-GGUF. For the ease of reproducibility,
we include the weights in the artifact package. The weights
are released under the 11ama?2 license, and the license files
LICENSE.txt and Notice are included in the package.

A.3 Set-up
A.3.1 Installation

The installation consists of four steps. Follow the detailed

instructions in the “Installation” section of README . md.

1. Set RV_ROOT_DIR to the root directory of the artifact by
executing the script in it:

source ./env.sh

2. Create the CVM images, aslr.qcow2 and big-disk.qc
ow2 (Table 1) in $SRV_ROOT_DIR/vm-images-creat
ion/. The first line takes around 10 minutes to execute.
The second line can take around 30 minutes. The default
username is ubuntu and the password is 123456.

The index of the customized kernel is 2 (the third line,
starting from 0). Now update the GRUB_DEFAULT in
/etc/default/grub to boot into the new kernel by
default.

GRUB_DEFAULT="1>[index]"

Here, [index] is the index of the new kernel in the
GRUB menu just recorded. Then update GRUB configu-
ration:

sudo update-grub

Reboot the machine and verify the kernel version with
uname -r. It should output 5.19.0-rc6-sev-step-9
99ae99.

4. Compile the user-space projects for the experiments.

cd SRV_ROOT_DIR && make

A.3.2 Basic Test

Launch guest CVMs. Run the following command to launch
VM1 (Table 1):

SRV_ROOT_DIR/launch-vml.sh

$RV_ROOT_DIR/vm-images-creation/create_vml.sh
$RV_ROOT_DIR/vm-images-creation/create_vm2.sh

3. Build and install the customized Linux kernel.

cd SRV_ROOT_DIR/sev-step
./build.sh ovmf && \
./build.sh gemu && \
./build.sh kernel

The above commands should generate kernel-packa
ges/ in SRV_ROOT_DIR/sev-step/. Install the *.deb
packages using the following command:

Upon a successful launch, a 1ogin prompt should appear
in the terminal (pressing “Enter” is required sometimes). If
the launch fails, check the script’s output for potential trou-
bleshooting instructions. Rebooting the host machine to reset
the state if necessary.

For launching VM2, execute the following instruction in a
new terminal (source ./env.sh first in it), which also kills
VML first due to the implementation limitation that VM1 and
VM2 cannot be run simultaneously. When switching VMs,
read the script output carefully for instructions and reboot the
host machine if necessary.

sudo dpkg -i \
$RV_ROOT_DIR/sev-step/kernel-packages/*.deb

SRV_ROOT_DIR/launch-vm2.sh

After installation, execute sudo update-grub to see if
the following lines are in the output:

Found linux image: /boot/vmlinuz-5.19.0-rc6-sev-step-999ae99
Found initrd image: /boot/initrd.img-5.19.0-rc6-sev-step-999
ae99

If so, the installation should be successful. Record its
index in the output, where the index starts from 0. For
example, if the output is:

Generating grub configuration file ...

Found linux image: /boot/vmlinuz-6.8.0-49-generic

Found initrd image: /boot/initrd.img-6.8.0-49-generic

Found linux image: /boot/vmlinuz-5.19.0-rc6-sev-step-999ae99

Found initrd image: /boot/initrd.img-5.19.0-rc6-sev-step-999
ae99

VM Name | gcow2image | memoy-size (in MB)
VM1 aslr.qgcow2 4096
VM2 big-disk.qgcow?2 4096

Table 1: CVMs used in the evaluation.

Test attack primitive. After launching a CVM, execute the
following command in a different terminal than the one with
the login prompt:

SRV_ROOT_DIR/t1l_test-primitive.sh

If it succeeds, a green checkmark followed by “Successfully...”
will appear on the screen when the script finishes.

https://huggingface.co/PowerInfer/ReluLLaMA-13B-PowerInfer-GGUF
https://huggingface.co/PowerInfer/ReluLLaMA-13B-PowerInfer-GGUF

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The frequency distributions of plaintexts in the CVM
are preserved when encrypted at the same system phys-
ical address (sPA), which can be exploited to learn the
ciphertexts corresponding to the prevalent values in the
CVM, such as zero (Section 1, Section 3.1).

(C2): The sparsity information in the guest page tables can
be exploited to significantly reduce the number of possi-
ble guest virtual addresses (GVA) of the glibc library
(Section 4, exemplified on nginx).

(C3): The sparsity information in the OpenVDB node buffers
can be used to leak the structural information of the ob-
jects being processed under OpenVDB library operations
(Section 5).

(C4): The sparsity information in the ReLU buffers can be
decoded and utilized to leak information about tokens
by placing probes on the blurred activation information
(Section 6).

A.4.2 Experiments

Claim C1 is supported by experiment E1-C1. For claim C2,
the main supporting experiment is E2-C2, plus an optional ex-
periment E3-C2. In contrast to the main experiments, which
complete within minutes, the experiments marked as (op-
tional) take significantly longer (several hours) and are in-
cluded for completeness. We support claim C3 with the main
experiment E4-C3 followed by optional experiments E5-C3,
E6-C3, and E7-C3. Finally, we support claim C4 with the
experiment E9-C4 preceded by the experiment E8-C4.
(E1-C1): [learning-zero-ciphertexts] [1 compute-minutes +
3 human minutes] In this experiment, the attacker learns
the ciphertexts corresponding to plaintext zeros in the
CVM on the target page.
Preparation: (1) Launch a victim CVM:

SRV_ROOT_DIR/launch-vml.sh # VMl as an example

Execution: Once the CVM is launched, in another win-
dow (or shell, log-in session)’, execute

SRV_ROOT_DIR/el_ciphertext-learning.sh

Results: If it succeeds, a green check followed by “Suc-
cessfully...” will appear on the screen when the script
finishes. A detailed description of the contents of col-
lected logs, including $RV_ROOT_DIR/cl.log and
SRV_ROOT_DIR/dmesg-output.log is in README.md.
(E2-C2): [ASLR] [Around 6 compute-minutes + 5 human-
minutes]: This experiment is a minimal demonstration
of the ASLR de-randomization scenario, exemplified by

! Depending on your preference, you can achieve multiple shells by using
tmux or logging in to a new session.

de-randomizing the glibc’s base address of nginx with
a single memory layout.
Preparation: (1) Launch the victim VM1 for ASLR.

SRV_ROOT_DIR/launch-vml.sh

Execution: Execute

SRV_ROOT_DIR/e2_aslr.sh

Results: The output logs are located in $RV_ROOT_DIR
/aslr/aslr-min-1log/. The detailed structure of this
directory is provided in the "Description of the Output
Logs" section of the README . md file. Upon successful
execution, the directory 0/nginx-worker/ should con-
tain a file whose name ends with window_size_64.1og.
The results of non-windowed and windowed trackings
can be checked at the end of 0/nginx-worker/wind
owed_evaluation.log, starting with the line “ASR
metrics for service nginx-worker”.

(E3-C2): [ASLR-full (optional)][5-6 compute-hours + 10
human-minutes] The spirit of this experiment is the same
as E2, but extends to all five applications in Section 4 and
evaluates 10 layouts for each. As a result, it takes around
50x more time than it takes for the E2-C2 experiment.
Preparation: The same as E2-C2.

Execution: Execute

SRV_ROOT_DIR/e3_aslr-full.sh

Results: The output logs will be in $RV_ROOT_DIR/a
slr/aslr-all-log/. They are similar to E2-C2 but
with more memory layouts and more applications for
each layout. Upon completion, execute the following
scripts to parse the logs and produce data for Table 2 in
the paper.

cd SRV_ROOT_DIR/aslr
python ./scripts/aslr_track_analysis.py

(E4-C3): [openvdb-traversal] [10 compute-minutes, 15-25
human-minutes] This experiment leaks the object’s struc-
tural information from OpenVDB’s read-only traversal
operation.

Preparation: (1) Launch the victim CVM VM2,

SRV_ROOT_DIR/launch-vm2.sh

Execution: Execute

S$RV_ROOT_DIR/ed_openvdb-traversal.sh

Results: The scripts produce logs in $SRV_ROOT_DIR
/openvdb-leak/openvdb-traversal-1-time/. A
detailed description of its structure is in README . md of
the artifact package. In this directory, the file output_a
11.txt contains the page fault events during tracking.
The scripts process the record of page-fault events and
output PLY files (a 3D data format commonly used to

store point clouds and polygonal meshes). When the
recovery succeeds, it should contain eight PLY files in
evaluation_traversal_extraction_<timestamp>
_1/<ply-file-dir>/.

Visualizing the extracted pieces and assembling them.
Synchronize the directory <ply-file-dir> and the
Blender project file SRV_ROOT_DIR/openvdb-1
eak/blender_projects/traversal.blend to
your local machine. The object labeled “original” in
the Blender project corresponds to the source object
shown in Figure 8(a), with the source file provided as
SRV_ROOT_DIR/openvdb-leak/blender_projects
/original.ply.

Import the extracted PLY files in <ply-file-dir> into
Blender and manually reassemble the eight fragments
by adjusting their positions along the X, Y, and Z axes,
as illustrated in $SRV_ROOT_DIR/openvdb-leak/bl
ender_projects/blender-adjust-xyz.png. Once
assembled, toggle visibility to show only the extracted
pieces, and export them as a single file, traversal.ply.
We also provide analysis tools in $RV_ROOT_DIR/ope
nvdb-leak/blender_projects/. For example, vi
sualize_traversal.py visualizes traversal.ply,
reproducing the effect shown in Figure 8. p2p_dist
_traversal.py generates part of the comparison in
Figure 9 of the paper, contrasting the distribution of
nearest-neighbor distances between objects extracted
from the traversal operation and randomly populated
points.

(E5-C3): [openvdb-traversal-3-trackings (optional)]

[Triple the time required for E4 + around 6 GB disk
space for storing the logs.] Everything remains the same
as in E4-C3, except the experiment is repeated three
times for evaluation.

Preparation: The same as E4-C3.

Execution: The same as E4-C3’s execution, but pass
a different number as the number of times to run as a
parameter. Execute

SRV_ROOT_DIR/e5_openvdb-traversal-3.sh

Results: The same as E4-C3 but applied to more track-
ing instances.

(E6-C3): [openvdb-construction (optional)] [Around 3

compute-hours + 15-25 human-minutes + around 80GB
disk space for storing logs] This experiment leaks the
object’s structural information from OpenVDB’s con-
struction operation.

Preparation: The same as E4-C3.

Execution: Execute

$RV_ROOT_DIR/e6_openvdb-construction.sh

Results: The same as E4-C3, but applied to a different
victim’s operation.

(E7-C3): [openvdb-construction-3-trackings (optional)]
[Triple the time required for E6-C3 + around 240 GB
disk space for storing the logs.] Everything remains the
same as in E6-C3, except the experiment is repeated
three times.

Preparation: The same as E4-C3.
Execution: Execute

S$RV_ROOT_DIR/e7_openvdb-construction-3.sh

Results: The same as E6-C3 but applied to more track-
ing instances.

(E8-C4): [sparse-llm-data] [5—6 compute-hours + 3 human-
minutes + around 230GB disk.] This experiment pro-
duces data for E9-C4.

Execution: Execute

SRV_ROOT_DIR/e8_sparse-llm-data.sh

Results: The result directory $RV_ROOT_DIR/sparsel
lm-probe/powerinfer_reduced_activation_pro
bes_results/ is generated.

(E9-C4): [sparse-llm-figures] [l compute-minute + 3
human-minutes] Visualize the results of E§-C4.
Preparation: Finish ES§-C4.

Execution: Execute

S$RV_ROOT_DIR/e9_sparse-llm-figures.sh

Results: Figures 11 and 12 in the paper can be produced
as probe_results.png and world_large_reduce
4 .png in the sparsellm-probe directory when the
execution succeeds.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

