
USENIX Security ’25 Artifact Appendix: Logs In, Patches Out:
Automated Vulnerability Repair via Tree-of-Thought LLM Analysis

Youngjoon Kim
Korea University

Sunguk Shin
Korea University

Hyoungshick Kim*

Sungkyunkwan University
Jiwon Yoon*

Korea University

A Artifact Appendix

A.1 Abstract
Paper: Research on automated vulnerability repair often re-
quires extensive program analysis and expert input, making it
challenging to deploy in practice. We propose SAN2PATCH,
a system that generates patches using only sanitizer logs and
source code, eliminating the need for costly program analysis
or manual intervention. SAN2PATCH employs multi-stage
reasoning with Large Language Models (LLMs) to decom-
pose the patching process into four distinct tasks: vulnera-
bility comprehension, fault localization, fix strategy formula-
tion, and patch generation. Through tree-structured prompting
and rigorous validation, SAN2PATCH can generate diverse,
functionally-correct patches. Evaluations on the VulnLoc
dataset show that SAN2PATCH successfully patches 79.5% of
vulnerabilities, surpassing state-of-the-art tools like Extract-
Fix (43%) and VulnFix (51%) by significant margins. On our
newly curated SAN2VULN dataset of 27 new vulnerabilities
from various open-source projects, SAN2PATCH achieves a
63% success rate, demonstrating its effectiveness on mod-
ern security flaws. Notably, SAN2PATCH excels at patching
complex memory-related vulnerabilities, successfully fixing
81.8% of buffer overflows while preserving program function-
ality. This high performance, combined with minimal deploy-
ment requirements and elimination of manual steps, makes
SAN2PATCH a practical solution for real-world vulnerability
remediation.

Artifact: This artifact includes not only the source code
of SAN2PATCH proposed in the original paper, but also the
VulnLoc benchmark with added functional tests and our newly
constructed SAN2VULN benchmark. All artifacts are docker-
ized for easy setup, and we provide bash scripts to reproduce
all experiments presented in Section 4 of the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

SAN2PATCH is an automated program repair tool that gener-
ates patches for vulnerabilities. As a result, the tool itself does
not pose any security, privacy, or ethical concerns. To prevent

*Corresponding authors

any issues that may arise during the reproduction process, we
provide a Docker environment for additional isolation.

A.2.2 How to access

Our artifact is permanently accessible through a DOI link1,
GitHub repositories2,3, and pre-built Docker images available
on Docker Hub4,5. Any download method is acceptable; how-
ever, we recommend downloading the Docker images directly
from Docker Hub for the most seamless setup experience.

A.2.3 Hardware dependencies

There are no specific constraints as long as the environment
supports Python 3.10 or Docker. However, we recommend a
CPU with at least 4 cores, 16 GB or more of RAM, and at least
100 GB of available disk space for reliable performance. Note
that the hardware used for the experiments in the original
paper comprised an Intel Xeon Gold 5218 CPU with 32 cores
(2.30 GHz) and 64 GB of RAM.

A.2.4 Software dependencies

If the artifact is executed directly on the host system, a Python
3.10 environment and Poetry version 2.1.1 or higher for
Python environment management are required. When using
the Docker image, Docker version 28 or higher is recom-
mended.

A.2.5 Benchmarks

This artifact provides the benchmark used in the original paper
as san2patch-benchmark. The benchmark consists of an ex-
tended version of VulnLoc with added functional tests and our
newly constructed SAN2VULN benchmark containing recent
vulnerabilities. To avoid dependency conflicts, the benchmark
must be executed in an independent Docker container. When
the san2patch Docker image is used, Docker-in-Docker must
be employed to run the san2patch-benchmark Docker im-
age within the san2patch container.

1https://doi.org/10.5281/zenodo.15614211
2https://github.com/acorn421/san2patch
3https://github.com/acorn421/san2patch-benchmark
4https://hub.docker.com/r/acorn421/san2patch/
5https://hub.docker.com/r/acorn421/san2patch-benchmark/

https://doi.org/10.5281/zenodo.15614211
https://github.com/acorn421/san2patch
https://github.com/acorn421/san2patch-benchmark
https://hub.docker.com/r/acorn421/san2patch/
https://hub.docker.com/r/acorn421/san2patch-benchmark/

A.3 Set-up
This section assumes the use of our pre-built san2patch
Docker image. For instructions on running the artifact in
a host environment, please refer to the README.md file within
the san2patch-main repository.

A.3.1 Installation

We recommend using the provided Docker images
for easier environment setup. Pulling and running the
san2patch Docker image automatically handles all nec-
essary configurations, including launching the required
san2patch-benchmark Docker image.

docker pull acorn421/san2patch
docker run -it --privileged --name san2patch acorn421/san2patch

Running the image automatically starts the Docker server
and pulls the san2patch-benchmark Docker image. Pulling
the image may require a noticeable amount of time (approx-
imately 30 minutes). Once the image has been successfully
launched, set the LLM API keys directly in /app/.env as
shown below. For more information on configuring the envi-
ronment, refer to the README.md in san2patch-main.

Required: LLM API Keys (at least one)
OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here
GOOGLE_API_KEY=your_google_api_key_here

A.3.2 Basic Test

python ./run.py Final run-patch --vuln-ids "CVE-2016-1839" --
model "gpt-4o" --experiment-name "test"

To verify whether the test ran successfully, check the fol-
lowing directory:

cd ./benchmarks/final/final-test/gen_diff_test

A.4 Evaluation workflow
After launching the Docker image and completing the setup,
a bash shell will be available. In this shell, scripts prepared in
the /app/experiments directory can be executed to repro-
duce the results of each RQ in the Evaluation section of the
original paper.

A.4.1 Major Claims

(C1): SAN2PATCH achieves a 79.5% patch success rate
(31/39 vulnerabilities) on the VulnLoc benchmark, sig-
nificantly outperforming existing approaches. This is
demonstrated by the evaluation in Section 4.1.

(C2): SAN2PATCH effectively patches recent and unseen vul-
nerabilities in the SAN2VULN benchmark at low cost
($0.48 per attempt) and within practical timeframes (un-
der 9 minutes per patch), as shown by the results in
Section 4.2.

(C3): The performance of SAN2PATCH improves with more
advanced LLMs, as its effectiveness relies on LLM capa-
bilities. This is demonstrated in Section 4.3.

(C4): The ToT-based patch generation methods, No Context
and SAN2PATCH, yield a higher proportion of function-
ally correct patches, as reported in Section 4.4.

(C5): SAN2PATCH effectively patches various types of vul-
nerabilities, as demonstrated by the experiments in Sec-
tion 4.5.

(C6): An ablation study shows that removing stages such
as Vulnerability Comprehension and How-To-Fix from
SAN2PATCH reduces performance, indicating that all
stages are essential. This is proven by the experiment in
Appendix A.

A.4.2 Experiments

How to Run Each experiment can be executed by running
the corresponding script file. If execution does not proceed
as expected, ensure that the san2patch-benchmark Docker
container is running properly inside the san2patch Docker-
in-Docker container.

Results The results of each experiment are saved in:

/app/benchmarks/final/final-test/gen_diff_{experiment_name}

where experiment_name is a unique identifier for each ex-
periment, as specified in the script files.

Key result files can be found under each ID of the vulnera-
bility directory:

• res.txt – Summary of all attempts, including status
codes.

• *_success.diff – The final patch that passed all auto-
mated tests (vulnerability and functionality tests)

• *_success.artifact – All intermediate information
generated during the successful patching process.

To check the automated validation results of the experiment,
refer to res.txt. To simply count the number of successful
patches, use the following command:

cd /app/benchmarks/final/final-test/gen_diff_{experiment_name}
ls ./**/res.txt | xargs -I {} bash -c "echo ’===== {} ====’;

cat {}; echo;" | grep success | wc -l

To conduct manual validation, examine each
*_success.diff file associated with vulnerabilities

that were successful in automated validation. Detailed criteria
for manual validation can be found in the supplementary
material6.

Please refer to the README.md in san2patch-main for fur-
ther details on additional result files.
(E1): VulnLoc Benchmark Evaluation [4 scripts]:

This experiment evaluates the vulnerability patching ca-
pability of SAN2PATCH on the VulnLoc benchmark,
supporting claims (C1), (C4), and (C5).
Estimated Time: Each script is executed with 4-core
parallel processing for 6 hours, for a total of 6 × 4 hours.
Estimated Cost: Less than $50 per script with GPT-4o,
requiring less than $50×4 in total.
Execution: Run the provided scripts for each method
as follows:
bash ./experiments/rq1/tot_vulnloc.sh
bash ./experiments/rq1/cot_vulnloc.sh
bash ./experiments/rq1/no_context_vulnloc.sh
bash ./experiments/rq1/zeroshot_vulnloc.sh

Results: The results are stored in the corresponding
output directories:
ls ./benchmarks/final/final-test/

gen_diff_usenix_tot_vulnloc
ls ./benchmarks/final/final-test/

gen_diff_usenix_cot_vulnloc
ls ./benchmarks/final/final-test/

gen_diff_usenix_no_context_vulnloc
ls ./benchmarks/final/final-test/

gen_diff_usenix_zeroshot_vulnloc

(E2): SAN2VULN Benchmark Evaluation [1 script]:
This experiment evaluates the vulnerability patching ca-
pability of SAN2PATCH on the SAN2VULN benchmark,
supporting claim (C2).
Estimated Time: The script is executed with 4-core
parallel processing for 4 hours, for a total of 4 hours.
Estimated Cost: Less than $40 in total with GPT-4o.
Execution: Run the provided script as follows:
bash ./experiments/rq2/usenix_tot_san2vuln.sh

Results: The results are stored in the following output
directory:
ls ./benchmarks/final/final-test/usenix_tot_san2vuln

(E3): LLM Model Comparison [5 scripts]:
This experiment compares the vulnerability patching
capability of SAN2PATCH using different LLM models,
supporting claim (C3).
Estimated Time: Each script is executed with 4-core
parallel processing for 6 hours, for a total of 6×5 hours
per script.
Estimated Cost: Less than $50 per script with GPT-4o,
requiring less than $50×5 in total.
Execution: Run the provided scripts for each model as
follows:

6https://doi.org/10.5281/zenodo.15654492

bash ./experiments/rq3/gpt_4o_mini.sh
bash ./experiments/rq3/gpt_35.sh
bash ./experiments/rq3/sonnet_35.sh
bash ./experiments/rq3/gemini_15_pro.sh
bash ./experiments/rq3/gemini_15_flash.sh

Results: The results are stored in the corresponding
output directories:
ls ./benchmarks/final/final-test/

gen_diff_usenix_gpt_4o_mini
ls ./benchmarks/final/final-test/gen_diff_usenix_gpt_35
ls ./benchmarks/final/final-test/gen_diff_usenix_sonnet_35
ls ./benchmarks/final/final-test/

gen_diff_usenix_gemini_15_pro
ls ./benchmarks/final/final-test/

gen_diff_usenix_gemini_15_flash

(E4): Ablation Study [2 scripts]:
This experiment investigates the impact of removing
certain reasoning stages from SAN2PATCH, supporting
claim (C6).
Estimated Time: Each script is executed with 4-core
parallel processing for 6 hours, for a total of 2×6 hours.
Estimated Cost: Less than $50 per script with GPT-4o,
requiring less than $50×2 in total.
Execution: Run the provided scripts as follows:
bash ./experiments/ablation/no_comprehend_k5.sh
bash ./experiments/ablation/no_howtofix_k5.sh

Results: The results are stored in the following output
directories:
ls ./benchmarks/final/final-test/

gen_diff_usenix_no_comprehend
ls ./benchmarks/final/final-test/

gen_diff_usenix_no_howtofix

A.5 Notes on Reusability
Occasionally, the Python script may not terminate automati-
cally even after all experiments have finished. This does not
indicate a failure; the experiments are still considered suc-
cessfully completed.

When running experiments in parallel, it is possible to ex-
ceed the API rate limit. It is recommended to monitor the logs
to ensure that rate limiting does not occur during execution.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://doi.org/10.5281/zenodo.15654492
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

