ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security *25 Artifact Appendix: Are CAPTCHAs Still Bot-hard?
Generalized Visual CAPTCHA Solving with Agentic Vision Language
Model

Xiwen Teoh!2, Yun Lin!, Siqi Li2, Ruofan Liu?, Avi Sollomoni?,
Yehuda Afek?, Yaniv Harel?, Jin Song Dong?

Shanghai Jiao Tong University', National University of Singapore?®, Tel Aviv University>

A Artifact Appendix

A.1 Abstract

Visual CAPTCHAS present users with interactive puzzles that
must be solved to access protected online content. Their ef-
fectiveness relies on the assumption that these challenges are
difficult for bots but easy for humans. However, the rise of
general-purpose Al models (e.g., ChatGPT) calls this assump-
tion into question, potentially undermining the reliability of
current CAPTCHA systems.

To evaluate the security of visual CAPTCHAS in this new
landscape, we implement our main artifacts: (1) Halligan, a
generalized visual language model (VLM)-based CAPTCHA
solver, and (2) an interactive offline benchmark containing 26
diverse types of visual CAPTCHAs. Halligan functions as a
VLM agent equipped with tools to abstract the CAPTCHA
layout, explore possible options, and reason about or compare
individual choices. It automatically formulates each visual
CAPTCHA as a search optimization problem and generates
an executable Python script to solve it. This script is reusable
across all instances of the same CAPTCHA type. For func-
tionality, we present Halligan’s script generation workflow
through execution traces and conduct attacks using the gener-
ated scripts on selected samples from the benchmark.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Halligan could be misused to attack CAPTCHASs on real-
world websites. Malicious actors might exploit it for purposes
such as promotion spam, registration abuse, data scraping,
or bot-driven raiding. Such misuse can undermine trust in
online communities, degrade user experiences, and disrupt
the normal operations of websites. However, in this AE, we
restricted all attacks to our offline benchmark. The benchmark
is self-contained and does not interact with any live websites
or CAPTCHA service providers. As such, AE reviewers do
not have associated risks.

A.2.2 How to access

Both Halligan and the benchmark are available in our Zenodo
repository (DOI: 10.5281/zenodo.15580922). Please use the
latest version.

A.2.3 Hardware dependencies

We tested the functionality on a desktop computer with 16GB
of GPU VRAM (Optional), 8GB of system RAM, and 16GB
of available disk space.

A.2.4 Software dependencies

We recommend using Linux. Our setup was tested on Ubuntu
20.04.3 LTS with Pixi 0.47.0, CUDA 12.1 (Optional), Docker
24.0.7, and Docker Compose 2.21.0.

A.2.5 Benchmarks

The benchmark for AE is provided in the artifact.

A.3 Set-up

Before proceeding with the installation, please make sure that
the following prerequisite software is installed.

1. Install Docker Desktop'

2. Install Pixi’

A.3.1 Installation
Setup Benchmark

1. In a new terminal, download and unzip benchmark.zip
from Zenodo.

2. Change into the benchmark directory:

Thttps://docs.docker.com/compose/install/
Zhttps://pixi.sh/dev/installation/


https://doi.org/10.5281/zenodo.15580922

3. Create and start containers.

docker compose up

This takes a few minutes. It begins by building the
benchmark Docker image using the provided Docker-
file, which should have a hash ID 1a27e353e£f13. Once
the build is complete, it will launch two containers: the
benchmark server and a browser. These containers ex-
pose ports 3000 and 5000 on the host, respectively.

Setup Halligan

1.

In a new terminal, download and unzip halligan.zip
from Zenodo.

Change into the halligan directory.

Setup Pixi environment.
pixi install

This may take a few minutes for Pixi to resolve all in-
stallation dependencies, update the lockfile and install
the environment.

Make a copy of .env.example with the filename .env.
cp .env.example .env

In .env, replace the value of OPENAI_API_KEY with our
provided key (no line breaks):

sed -1 "s/"OPENAI_API_KEY=.*/OPENAI_API_KEY=
sk-proj-0G5YTPRtbreaTJSxjzbDtvvvgIPcZméAg3-
WwuVusHBplWp4Z-Ws7mSSP44hYT7£TLAKYO7M3DT3B1

bkFJZEnH8-BegqmYNOtxP47to2IMuhfxwagw3ZkUpy4£fLF1

PLtROQiYfKCJIOry0LAQRGaFC1b1lcK74A/" .env

A.3.2 Basic Test

1.

In a new terminal, navigate to /halligan

2. Run the script basic_test.py, which checks that the

benchmark, browser, and the key components of Halli-
gan are functioning correctly.

pixi run pytest basic_test.py --verbose

Once completed, verify that the terminal displays 29
lines of PASSED test messages:

basic_test.py::test_browser PASSED
basic_test.py::test_benchmark PASSED
basic_test.py::test_captchas[...] PASSED

basic_test.py::test_halligan PASSED
===== 29 passed in 31.45s =====

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Halligan automatically generates an executable
Python script for solving challenges of a given visual
CAPTCHA type. This capability is demonstrated by Ex-
periment (E1), whose three-stage process is detailed in
Section 3 and illustrated in Figure 2.

(C2): Using the generated scripts, Halligan successfully
solves at least one challenge from each of the 26 vi-
sual CAPTCHA types included in the benchmark. This
is proven by Experiment (E2), with full details provided
in Table 4.

A.4.2 Experiments

(E1): [10 human-minutes + 20 compute-minutes]: The first
experiment demonstrates Halligan’s script generation
process.

Preparation: It is assumed that you have followed the
set-up instructions (§A.3.1)
Execution: Run the experiment as follows:
1. Open a new terminal session and navigate to
/halligan.
2. Run the generation script:
pixi run python generate.py
Results: Verify that a log file matching the pattern
agent-*.log is created. In the log file, confirm that Halli-
gan has generated scripts for 26 out of 26 CAPTCHA:s,
each with a unique name, and that each entry is followed
by [Stage 1] ... [Stage 3], resulting in a total of
104 lines. A sample output is shown below for reference:

Generating script (1 out of 26): lemin
[Stage 1] Objective Identification
[Stage 2] Structure Abstraction
[Stage 3] Solution Composition
Generating script (2 out of 26): geetest/slide

Generating script (26 out of 26): amazon
[Stage 1] Objective Identification
[Stage 2] Structure Abstraction
[Stage 3] Solution Composition

Next, verify that a new directory
/results/generation, relative to the generation
script, is created. This directory should contain 26
. ipynb generation trace files, each with a unique name.
These files show how Halligan generates the solution
script for each CAPTCHA.

/lemin.ipynb
/geetest_slide.ipynb

/amazon.ipynb



Examine one of the . ipynb trace files, verify that there
is a PROMPT = and RESPONSE = code block under the
headings "Objective Identification", "Structure Abstrac-
tion", and "Solution Composition". For example:

PROMPT = ...

RESPONSE = ...

TIME = 7.902754155918956
FINGERPRINT = fp_5bf33clecd
TOTAL_TOKENS = 866
PROMPT_TOKENS = 707
COMPLETION_TOKENS = 159

(E2): [5 human-minutes + 20 compute-minutes]: The second
experiment uses scripts generated by Halligan to solve
26 different types of CAPTCHAs in the benchmark.
Preparation: It is assumed that you have followed the
set-up instructions (§A.3.1)

Execution: Run the experiment as follows:
1. Open a new terminal session and navigate to
/halligan.
2. Run the execution script:
pixi run python execute.py
Results: Verify that a log file matching the pattern
agent-*.logis created. In the log file, confirm that Hal-
ligan has tested 26 out of 26 CAPTCHAs, each with a
unique name, and that each entry is followed by Solved:
True, resulting in a total of 52 lines. A sample output is
shown below for reference:

Testing CAPTCHA (1 out of 26): lemin

Solved: True

Testing CAPTCHA (2 out of 26): geetest/slide
Solved: True

Testing CAPTCHA (26 out of 26): amazon
Solved: True

Next, verify that a new directory /results/execution,
relative to the execution script, is created. This directory
should contain 26 .ipynb execution trace files, each
with a unique name. These files demonstrate how Halli-
gan’s script derives the solution for each CAPTCHA.

/lemin.ipynb
/geetest_slide.ipynb

/amazon.ipynb

A.5 Notes on Reusability

Each CAPTCHA type in the benchmark is implemented as a
Flask Blueprint and can be accessed or extended via routes fol-

lowing the pattern . . . /{CAPTCHA_NAME}/{CHALLENGE_ID}
For more information on Flask Blueprints, see this tutorial.
Halligan can be applied to other visual CAPTCHAs outside
of the benchmark, without requiring additional configuration.
For more details, see Section 4.4. Halligan also supports two
example practical use cases: (1) it can aid in anti-phishing
and security crawling by revealing CAPTCHA-cloaked phish-
ing websites, and (2) it can assist webmasters and security
practitioners in designing more robust anti-bot mechanisms
by testing the effectiveness of new CAPTCHA challenges.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://flask.palletsprojects.com/en/stable/blueprints/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


