ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
MCSEE: Evaluating Advanced Rowhammer Attacks and Defenses
via Automated DRAM Traffic Analysis

Michele Marazzi
ETH Zurich

Patrick Jattke
ETH Zurich

A Artifact Appendix

A.1 Abstract

McSee is an open-source platform for capturing and analyzing
DRAM bus traffic. It is based on a high-frequency oscillo-
scope with a custom-designed interposer and an optimized
trace data processing pipeline, including a DDR4/5 decoder.

The artifacts of our work include the McSee platform, in-
cluding the design of the custom-built DDR5 UDIMM inter-
poser and the oscilloscope decoding and analysis pipeline.
Further, we provide the code of our experiments and the cap-
tured oscilloscope traces for validating our claims.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our work does not involve any end-to-end Rowhammer at-
tacks, neither does McSee capture any data signals from the
DRAM bus. Therefore, our artifacts do not raise any security,
privacy, or ethical concerns.

A.2.2 How to access

The artifacts and collected data is available on Zenodo at
https://doi.org/10.5281/zenodo.15610915. To facili-
ate the access, we also publish the artifacts (code only) on
GitHub at https://github.com/comsec-group/mcsee.

A.2.3 Hardware dependencies

Reproducing our results requires systems with specific CPUs,
DDR5 UDIMMs requiring RFM, and the hardware of the
McSee platform.

Systems. We used following CPUs for our experiments.

* DDRS experiments:
— Intel Alder Lake (i7-12700K), ucode: 0x3a
— Intel Raptor Lake (i7-13700K), ucode: 0x129
— AMD Zen 4 (Ryzen 7 7700X), ucode: 0xa601203

Flavien Solt
UC Berkeley

Kaveh Razavi
ETH Zurich

Stefan Gloor
ETH Zurich

Max Wipfli
ETH Zurich

* DDR4 experiments:
— Intel Coffee Lake (i7-8700K), ucode: 0xf8

DDRS UDIMMs. Validating our results on real hardware
requires DDRS UDIMMs where the RFM required bit is set
and valid RFM values are provided in the SPD data. This data
can be obtained from the SPD EEPROM of the UDIMM by
using the SPD reader tool provided in the artifacts.
Reproducing the DDRS bit flips that we found on one of
the devices (S4, Samsung), requires the same DDR5 UDIMM
as used in Zenhammer: a 16 GB Samsung UDIMM, model
M323R2GA3BB0-CQKOD with 4800 MHz.

McSee platform hardware. The McSee platform is based
on the following hardware components (see §4.1 for details):

* Oscilloscope (TELEDYNE SDA 806Zi-B)

* Digitizer (TELEDYNE HDA125-18-LBUS)

* Differential probe (TELEDYNE DHO08-PB2)

* Analog probe (TELEDYNE PP021)

* Solder-in leads (TELEDYNE HDA-DLS-18QL)

* DDRS5 UDIMM interposer (custom design, see artifacts)
* 5 GbE USB NIC (Startech US5GA30)

We provide the oscilloscope captures to reproduce our
results such that no access to McSee and the exact same
hardware is required.

A.2.4 Software dependencies

We require a Linux-based operating system to run our
software. Our experiments were conducted on Ubuntu
20.04.6/22.04.5/24.04.1 LTS and GNU/Linux kernel versions
6.1.118/6.8.0/6.9.0. However, our experiments and tools do
not rely on any particular OS kernel version.

A.2.5 Benchmarks

None.


https://doi.org/10.5281/zenodo.15610915
https://github.com/comsec-group/mcsee

A.3 Set-up
A.3.1 Installation

We refer to the README file in the repository for installation
instructions.

A.3.2 Basic Test

The README of the respective component of our McSee
platform contains information on how to check if it has been
installed correctly.

A.4 Evaluation workflow
A.4.1 Major Claims

Our work makes the following major claims:

(C1): The McSee data processing pipeline is open source
and allows to efficiently capture and decode DDR4/5
bus traffic (see §4.2). We describe where to find
the different software components of McSee in the
README of our artifacts repository.

(C2): The PCB design of our custom-built DDR5 UDIMM
interposer as part of the McSee platform is open
source (see §4.1). The design can be found in the
ddr5-udimm-interposer-pcb directory of the arti-
facts repository.

(C3): The DDRS SPD decoder is open source and allows
to decode the RFM values of DDR5 UDIMMs (see
§6.1). The decoder can be found in the spd-decoder
directory of the artifacts repository. We describe in
experiment (E1) how we used the decoder to extract
the relevant values.

(C4): We show that Sledgehammer’s activation throughput
declines when hammering more than six banks in
parallel (see §5.1). This is proven by experiment (E2)
whose result is illustrated in Figure 7.

(C5): We show that Sledgehammer does not achieve less
reordering of aggressor accesses when hammering
more banks in parallel (see §5.1). This is proven by
experiment (E3) whose result is illustrated in Figure 8.

(C6): We show that RowPress’ average row-open time on a
real system is in the range where the reduction of the
minimum activation count (ACp,) to trigger a bit flip
is small (see §5.2). This is proven by experiment (E4)
whose result is illustrated in Figure 9.

(C7): Systematic bit flipping allows to recover the DRAM
addressing functions of our Zen 4 CPUs (see §6.2).
This is proven by experiment (ES) whose result is
presented in Table 3.

(C8): Intel Raptor Lake CPUs do not issue any RFM com-
mands, but they employ a memory controller-based
mitigation pTRR that refreshes aggressor-adjacent
rows (see §6.3). This is proven by experiment (E6)
whose result is illustrated in Figure 10.

(C9): Intel pTRR targets victim rows with a probability of
0.091% (see §6.4). This is proven by experiment (E7)
whose result is illustrated in Figure 11.

(C10): Given the pTRR probability, we calculate the pTRR
bypass time: devices protected with pTRR with a
Rowhammer threshold of 13200, 16700, and 18800
activations can be bypassed with roughly 50% attack
success probability in less than an hour, one day, and
one week, respectively. This is proven by experiment
(E8) whose result is illustrated in Figure 12.

A.4.2 Experiments

As we require multiple different systems attached to the
McSee platform to reproduce our results, we provide the
(unprocessed) oscilloscope traces of the following experi-
ments. We report effort as a triple “[HM/CH/DU]” of human-
minutes (HM), compute-hours (CH), and disk usage in giga-
bytes (DU).

(E1): RFM values [1:30h/0:20h / 1 MiB]. We use our
DDRS5 SPD decoder to extract the RFM values from
the SPD data of the 29 DDRS5 UDIMMs that we use
in our experiments.

Preparation: Follow the instructions in the
README file in experiments/el-rfm-values.

Execution: Extract the SPD data of the DIMMs, then
parse the arfm object of the generated JSON files. We
provide the collected SPD data in the experiment’s
data/ directory.

Results: As shown in Tbl. 7, 19 of 30 devices have
valid RFM values (i.e., raaimt and raammt are not set
to RFU). One of the 19 devices has the RFM required
bit (rfm_req) set.

(E2): Sledgehammer’s activation throughput
[2:20h/ 1h/40GiB]. Using McSee, we mea-
sure the per-bank and total activation throughput of
Sledgehammer.

Preparation: Follow the instructions in the
READMEE file in experiments/e2-sledgehammer.

Execution: Run our modified Sledgehammer fork on
the Coffee Lake system while taking three captures of
each 1 ms with the McSee platform. Repeat this for 1
to 16 banks.



(E3):

(E4):

(E5):

(Eo):

Results: The activation rate per bank strongly de-
clines when hammering more than six banks in paral-
lel, as shown in Fig. 7.

Sledgehammer’s access reordering
[0:05h/0:01h/40GiB]. We analyze the dis-
tance (in activations) between consecutive accesses to
the same aggressor in Sledgehammer.

Preparation: Follow the instructions in the
README file in experiments/e2-sledgehammer.

Execution: No execution is required, we use the data
gathered in (E2) and use a script to analyze the traces.

Results: Increasing the number of in parallel ham-
mered banks, increases the frequency of reordering
aggressor accesses, as shown in Fig. 8.

RowPress’ row-open time [1h/0:40h /20 GiB].
We run the real system demonstration of RowPress
on a Coffee Lake system to measure the average
row-open time using McSee.

Preparation: Follow the instructions in the
README file in experiments/ed4-rowpress.

Execution: Run our modified RowPress fork on the
Coffee Lake system while taking two captures of each
I ms with the McSee platform. Repeat this for 1, 4, 8,
16, 32, 64, 80, and 128 column reads.

Results: An average tag,on time between approx.
50ns (1 cache block read) and almost 300 ns (128
cache block reads) as shown in Fig. 9.

Systematic bit flipping [0:20h /0:30h / 30 GiB].
We run the systematic bit flipping experiment on
our Intel Raptor Lake system to recover the DRAM
addressing functions and labels.

Preparation: Follow the instructions in the
README file in experiments/e5-systematic
-bit-flipping.

Execution: Run the provided code implementing the
systematic bit flipping experiment described in Algo-
rithm 1. This code automatically triggers Run the code
on the three different DRAM configurations listed in
Tbl. 3.

Results: The three different sets of DRAM address-
ing functions as shown in Tbl. 3.

Existence of pTRR [0:20h / 0:15h / 100 MiB]. We
verify that on Intel Raptor Lake CPUs, the memory
controller infrequently issues an activate command to
a row neighboring our hammered aggressor row.

instructions in the
experiments/eb-ptrr

Preparation: Follow the
README file in
-existence.

(E7):

(ES8):

AS

Execution: We use the same hammering workload
with a double-sided aggressor pair as in the pTRR
probability experiment (E7).

Results: The aggressor-adjacent rows are refreshed
by pTRR, as shown in Fig. 10, although they are never
accessed in the experiment.

PTRR probability [0:30h / 8h / 150 GiB] We run a
double-sided hammering workload on our Intel Raptor
Lake system to determine the probability of pTRR to
targeting the victim row.

instructions in the
experiments/e7-ptrr

Preparation: Follow the
README file in
-probability.

Execution: We hammer a double-sided aggressor
pair while capturing traces with the McSee platform.

Results: A bar plot fitting a binomial probability dis-
tribution with p = 0.00091 as shown in Fig. 11.

PTRR attack success rate [0:05h / 0:05h / 10 MiB]
We use the determined pTRR probability to calculate
the success rate of bypassing pTRR over time.

Execution: Run the provided MATLAB script
calculate_prob.mlx either locally or using the
MATLAB cloud service.

Results: A plot as in Fig. 12 showing that devices
protected with pTRR with a Rowhammer threshold of
13200, 16700, and 18800 activations can be bypassed
with roughly 50% attack success probability in less
than an hour, one day, and one week, respectively.

Notes on Reusability

The core of our McSee platform is the DDR4/5 DRAM com-
mand decoder. As this decoder works on the oscilloscope
traces that have been beforehand transformed into the CSV
format, it is platform-agnostic and can be used with any other
hardware setup that is capable of producing such CSV traces.

A.6

Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://matlab.mathworks.com/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


