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A.1 Abstract

We provide the source code used in our experiments which
implements the set of attacks that successfully remove a Tree-
Ring Watermark. The primary contribution is an implementa-
tion of projected gradient descent using a surrogate classifier
which operates in the latent space of the diffusion model.
Currently our attacks only operate within the latent space
provided by Stable Diffusion v2.1, SDXL and Ostris (a 16-
Channel VAE). We also provide the implementation of an-
other attack called Adversarial noising, created by Nils et al.,
which was adapted to our evaluation framework. Additionally,
we provide the images used as the target class images which
our attacks attempt to imitate. This is given as two sets, one
set (named wmvsunwm_imagenet) contains 1500 images to
be used as reference images in assessing Wm vs Unwm at-
tacks and the other set (named wmvspub_imagenet) contains
7000 images to be used in Wm vs Public attacks. Both sets
of images have their corresponding set of prompts inside the
prompts directory of the repository.

A.2 Description & Requirements

Within the repository, we include a README file to describe
the Python environment used to produce the results reported
in our paper. Additionally, we also provide a DockerFile to
allow users to build a virtual machine with all the necessary
libraries. Beyond the libraries we also require the user to
install model weights that need to be placed within the base
directory of the repository. These are OpenAl’s imagenet
diffusion weights ' and Alexnet weights °.

A.2.1 Security, privacy, and ethical concerns

Our attacks specifically target images and does not affect the
system in any way. Furthermore, the datasets and models used
are open sourced by their respective authors. As such, there is

"https://openaipublic.blob.core.windows.net/diffusion/
jul-2021/512x512_diffusion.pt

’https://github.com/richzhang/PerceptualSimilarity/tree/
master/lpips/weights

no risk associated with the security of the machine or data pri-
vacy. With regard to ethical concerns, Tree-Ring watermark-
ing is still in the prototype stage and has not been deployed.
Therefore, the likelihood of malicious actors exploiting these
attacks is minimal, while exposing their vulnerabilities gives
a better understanding of the limitations of ML watermarking.

A.2.2 How to access

A stable version of the artifact is provided in Zen-
odo °. The stable URL points to the latest version of
the artifact which contains three archives. These are
wmvspub_imagenet.tar.gz which contains 7000 images
sampled from ImageNet, wmvsunwm_imagenet.tar.gz
which contains 1500 images from ImageNet and
crack-in-the-bark-main.zip which contains the
source code for our experiments.

A.2.3 Hardware dependencies

Our experiments were run on an Nvidia A100 GPU with
80GB of VRAM with 8 CPU cores. The minimum memory
requirement is 32GB with atleast 50GB of storage available.

A.2.4 Software dependencies

All software dependencies are listed in the README file
inside the repository. The minimum requirements are Python
and a package manager (e.g. conda/pip/mamba). The Docker-
file also constructs a machine image with the Python environ-
ment already setup.

A.2.5 Benchmarks

The datasets are provided within the Zenodo repository for
this project. The diffusion models such as Stable Diffusion,
SDXL’s VAE of Ostris’s VAE are installed when the code is
run. Additional models such as Alexnet’s weights and Guided
Diffusion’s weights were detailed in Section A.2.

3https://doi.org/lO.5281/zenodo.15595719
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A.3 Set-up
A.3.1 Installation

Installation of packages should be done using a python pack-
age manager (e.g. conda/pip/mamba) if not using the Docker
image. The version of Python we use is 3.10 and the CUDA
drivers are version 12.6. After unzipping the source code,
you will need to install and unzip the imagenet datasets from
Zenodo into the base directory of the repository. You will
also need to clone the Perceptual Similarity repository and
move the "weights" directory inside the "lpips" directory to
the base of the repository. Finally, you will need to download
the Guided Diffusion weights from OpenAl and place them
within the base of the repository.

Note that the version of huggingface_hub used has
a bug related to the version of the diffusers library
used. As such, we require the user to manually edit the
dynamic_modules_utils.py file. Details on what to edit
and where to find the file are described in the source code’s
README under the section 'Dependencies’. This step can
be skipped if

A.3.2 Basic Test

To verify that the environment has been properly set up, we
provide a simple verification experiment via ’verify.sh’. Run-
ning this script will start a pipeline which goes through each
stage of the attack. This simple experiment should take no
longer than 10 minutes, depending on the GPU used. Af-
ter this script has finished running, a log directory will be
made containing two folders, one containing all the data, i.e.
the cached latents, images, prompt to image tables e.t.c. The
other containing the evaluation results. Additionally, an out-
put folder should have been created with two subdirectories,
’images’ and *models’. The should contain the output images
of the attack and the surrogate model used to execute the
attack respectively.

A.4 Evaluation workflow
A.4.1 Major Claims

The main claims made in our paper are:

(C1): All the surrogate detectors (trained on Raw Pixel Val-
ues, True Latent Vectors, and VAE-Recovered Latent
Vectors) achieve high accuracy and none of them signifi-
cantly overfits. This is shown by experiments (E3)—(E6),
and (E11) and (E12) described in Section 5.2 whose
results are reported in Table 1.

(C2): Our evaluation of adversarial noising achieves a
TPR@ 1%FPR of 0.141 for & = 2, slightly higher than
the reported 0.052 of the original paper. This is proven
by experiment (E2) described in Section 5.3 and reported
in the second row of Table 2.

(C3): We found a discrepancy between An et al.’s and our
results when executing the PGD attack with a surro-
gate trained on the Raw Pixel Values of the Wm & Pub
dataset: they reported an average TPR@1%FPR of 0.99,
but our results show a value of 0.48. This is proven by
experiments (E3) and (E4) described in Section 5.3 and
reported in the third row of Table 2.

(C4): Our PGD attack on the True Latents Vectors (fourth
row of Table 2) performs worse than our surrogate at-
tack trained on VAE-Recovered Latent Vectors. This is
supported by experiments (ES), (E6), (E11), and (E12)
described in Section 5.3 and reported in rows 5 and 6 of
Table 2.

(C5): Among the attacks we evaluated, our proposed attack
by recovering latents using AutoencoderKL (the same
autoencoder as the target) results in the largest drop in
accuracy, while maintaining image quality comparable
to the baseline. This is supported by experiments (E2)—
(E6), and (E11) and (E12), described in Section 5.3 and
reported in Table 2.

(C6: All the attacks included in our evaluation are signifi-
cantly more effective than any of the approaches tested
by Wen et al.: they report an average ROC-AUC of 0.975
and TPR@1%FPR of 0.694, while the attacks we eval-
uate achieve an average of 0.519 ROC-AUC and 0.261
TPR@1%FPR, representing a 1.9x decrease in overall
detection accuracy. Our results are obtained by conduct-
ing experiments (E2)—-(E6), and (E11) and (E12), de-
scribed in Section 5.3 and reported in Table 2.

(C7): Using SDXL’s VAE, the attack remains robust, though
less effective than when using the victim model’s VAE
and with lower image quality. This is supported by ex-
periments (E7) and (E8) described in Section 5.4 and
reported in row 5 of Table 2.

(C8): Training the attack with the SDXL’s VAE on the Wm
& UnWm dataset significantly degrades image quality,
with the FID score increasing by 33.71 and similar in-
creases in LPIPS and CLIP Score. This is demonstrated
by experiments (E7) and (E8) described in Section 5.4
and shown in row 5 of Table 2.

(C9): The 16-Channel VAE’s performance is comparable
to training the surrogate detector on raw images. This
is shown by experiments (E9) and (E10) described in
Section 5.4 and shown in row 6 of Table 2.

(C10): While the attack still decreases the effectiveness of
Tree-Ring, it is not as successful as when the target VAE
is available. This is supported by experiments (E13) and
(E14) described in Section 5.5 and reported in Table 3.

(C11): In the no-attack setting, for base rates below 0.1, pre-
cision decreases significantly, even for high TPRs. This
is supported by experiments (E1) and (E15) described
in Section 5.6 and illustrated in the no-attack subplot of
Figure 8.



A.4.2 Experiments

Within the repository, a detailed README is provided, called
‘example_pipelines.md‘. After the setup instructions pro-
vided in Section A.3.1, all thats needed is to follow the ex-
ample pipelines provided whilst substituting the names of
directories automatically generated after completion of cer-
tain scripts.

(E1): No Attack Baseline [20 human-minutes + 12 compute-
hours + 1GB disk]: Generate watermarked images and
assess detection performance without any attack to es-
tablish baseline metrics.

How to: Follow the "No Attack" pipeline in
example_pipelines.md. Run generate_data.py
then assess_images.py using the same watermarked
images as both original and adversarial inputs to
establish baseline detection rates.

Results: Baseline watermark detection  perfor-
mance metrics (PRC-AUC, ROC-AUC, Accuracy,
TPR@1%FPR) and image quality scores (LPIPS, CLIP,
FID) stored in summary. json under the assessment logs
directory. If no changes were made to the —-run_name
parameter, the directory created will have "no_attack” in
its name.

(E2): Adversarial Noising Attack [20 human-minutes + 24
compute-hours + 2GB disk]: Reproduce the baseline ad-
versarial noising attack from prior work for comparison
with our methods.

How to: Follow the "Adversarial Noising" pipeline
in example_pipelines.md. Generate  water-
marked data, then run remove_watermark.py
with --attack=adv_noising and --mode=rawpix,
followed by assessment.

Results: Adversarial Noising performance metrics
(PRC-AUC, ROC-AUC, Accuracy, TPR@ 1%FPR) and
image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the —-run_name parameter, the
directory created will have "adv_noising" in its name.

(E3): Raw Pixel Surrogate Attack - WM vs UnWM [20
human-minutes + 8 compute-hours + 2GB disk]: Train
surrogate model on raw pixels comparing watermarked
vs generated non-watermarked images, then perform
PGD-based removal.

How to: Follow the "Raw Pixel Values - Wm vs
UnWm" pipeline in example_pipelines.md. Generate
both watermarked and non-watermarked images, train
surrogate with ——-mode=rawpix, then perform removal
and assessment.

Results: Raw Pixel Wm vs UnWm performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR@ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the --run_name parameter,

the directory created will have "wmvsunwm_rawpix" in
its name.

(E4): Raw Pixel Surrogate Attack - WM vs Public [20

human-minutes + 16 compute-hours + 8GB disk]: Train
surrogate model comparing watermarked images vs pub-
lic dataset images for more realistic attack scenario.
How to: Follow the "Raw Pixel Values - Wm vs
Public" pipeline in example_pipelines.md. Gen-
erate watermarked images, train surrogate against
wmvspub_imagenet dataset with —-mode=rawpix, then
perform removal and assessment.

Results: Raw Pixel Wm vs Public performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR@ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the --run_name parameter,
the directory created will have "wmvspub_rawpix" in its
name.

(ES): True Latent Vector Attack - WM vs UnWM [20 human-

minutes + 8 compute-hours + 2GB disk]: Attack using
true latent vectors from diffusion process comparing
watermarked images vs generated non-watermarked im-
ages.

How to: Follow the "True Latent Vectors - Wm vs
UnWm" pipeline in example_pipelines.md. Gener-
ate data with --save_raw_latent flag when running
generate_data.py, train surrogate, perform latent-
space removal and assess.

Results: True Latent Wm vs UnWm performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR @ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the -—run_name parameter, the
directory created will have "wmvsunwm_true_latent" in
its name.

(E6): True Latent Vector Attack - WM vs Public [20 human-

minutes + 16 compute-hours + 8GB disk]: Attack using
true latent vectors from diffusion process comparing
watermarked images vs public images.

How to: Follow the "True Latent Vectors - Wm vs Pub-
lic" pipeline in example_pipelines.md. Generate wa-
termarked data with ——save_raw_latent, recover la-
tents for public images using recover_latents.py,
train, attack and assess.

Results: True Latent Wm vs Public performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR@ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the --run_name parameter,
the directory created will have "wmvspub_true_latent"
in its name.

(E7): SDXL-VAE Latent Attack - WM vs UnWM [20

human-minutes + 8§ compute-hours + 2GB disk]: Attack
using SDXL VAE-recovered latents against generated



non-watermarked dataset.

How to: Follow the "SDXL-VAE Latent Vectors -
Wm vs UnWm" pipeline in example_pipelines.md.
Generate images, recover latents using SDXL VAE
(stabilityai/sdxl-vae), train surrogate, perform re-
moval and assess images

Results: SDXL-VAE Wm vs UnWm performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR @ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the --run_name parameter, the
directory created will have "wmvsunwm_sdxI_latent" in
its name.

(E8): SDXL-VAE Latent Attack - WM vs Public [20 human-

minutes + 16 compute-hours + 8GB disk]: Attack using
SDXL VAE-recovered latents against public dataset.
How to: Follow the "SDXL-VAE Latent Vectors - Wm
vs Public" pipeline in example_pipelines.md. Gen-
erate watermarked images, recover SDXL latents for
both watermarked and public images, train surrogate and
perform attack.

Results: SDXL-VAE Wm vs Public performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR@ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the ——run_name parameter, the
directory created will have "wmvsunwm_sdxI_latent" in
its name.

(E9): 16-Channel VAE Attack - WM vs UnWM [20 human-

minutes + 8 compute-hours + 2GB disk]: Attack using
high-dimensional VAE latents with 16 channels against
generated non-watermarked dataset.

How to: Follow the "16-Channel VAE Latent Vectors
- Wm vs UnWm" pipeline in example_pipelines.md.
Use ostris/vae-k1-£8-dl6 model for latent recovery,
train surrogate in high-dimensional latent space, perform
the attack and assess.

Results: 16-Channel VAE Wm vs UnWm perfor-
mance metrics (PRC-AUC, ROC-AUC, Accuracy,
TPR@1%FPR) and image quality scores (LPIPS, CLIP,
FID) stored in summary.json under the assessment
logs directory. If no changes were made to the
—--run_name parameter, the directory created will have
"wmvsunwm_ostris_latent" in its name.

(E10): 16-Channel VAE Attack - WM vs Public [20 human-

minutes + 16 compute-hours + 8GB disk]: Attack using
high-dimensional VAE latents with 16 channels against
public dataset.

How to: Follow the "16-Channel VAE Latent Vectors
- Wm vs Public" pipeline in example_pipelines.md.
Recover 16-channel latents for both watermarked and
public images using ostris/vae-kl1-£8-dl16, then
train, attack and assess.

Results: 16-Channel VAE Wm vs Public perfor-

mance metrics (PRC-AUC, ROC-AUC, Accuracy,
TPR @ 1%FPR) and image quality scores (LPIPS, CLIP,
FID) stored in summary.json under the assessment
logs directory. If no changes were made to the
--run_name parameter, the directory created will have
"wmvspub_ostris_latent" in its name.

(E11): VAE - Recovered Attack - WM vs UnWM [20 human-

minutes + 8 compute-hours + 2GB disk]: Attack us-
ing SD VAE-recovered latents against generated non-
watermarked dataset.

How to: Follow the "VAE-Recovered Latent Vectors -
Wm vs UnWm" pipeline in example_pipelines.md.
Use stabilityai/stable-diffusion-2-1-base for
latent recovery, train surrogate with, perform attack and
assess.

Results: SD VAE Wm vs UnWm performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR@ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the --run_name parameter,
the directory created will have "wmvsunwm_sd_latent"
in its name.

(E12): VAE - Recovered Attack - WM vs Public [20 human-

minutes + 16 compute-hours + 8GB disk]: Attack using
SD VAE-recovered latents against public dataset.

How to: Follow the "VAE-Recovered Latent Vectors
- Wm vs Public" pipeline in example_pipelines.md.
Recover SD VAE latents for watermarked images and
public dataset, train surrogate, perform attack and assess.
Results: SD VAE Wm vs Public performance met-
rics (PRC-AUC, ROC-AUC, Accuracy, TPR @ 1%FPR)
and image quality scores (LPIPS, CLIP, FID) stored in
summary . json under the assessment logs directory. If
no changes were made to the ——run_name parameter,
the directory created will have "wmvspub_sd_latent" in
its name.

(E13): Guided Diffusion Attack - WM vs UnWM [20 human-

minutes + 30 compute-hours + 6GB disk]: Attack using
OpenAI’s Guided Diffusion model comparing against
generated non-watermarked dataset.

How to: Follow  the "Attack  on Guided
Diffusion Model - Wm vs UnWm"
pipeline in example_pipelines.md. Use
--model_id=512x512_diffusion for generation
assuming you have placed the model at the base
directory after installing from the Guided Diffusion
repository, train surrogate, perform attack and assess.
Results: Guided Diffusion Wm vs UnWm per-
formance metrics (PRC-AUC, ROC-AUC, Accuracy,
TPR @ 1%FPR) and image quality scores (LPIPS, CLIP,
FID) stored in summary.json under the assessment
logs directory. If no changes were made to the
--run_name parameter, the directory created will have
"wmvsunwm_guided_diffusion" in its name.



(E14): Guided Diffusion Attack - WM vs Public [20 human-
minutes + 48 compute-hours + 8GB disk]: Attack using
OpenAl’s Guided Diffusion model comparing against
public dataset.

How to: Follow the "Attack on Guided Dif-
fusion Model - Wm vs Public" pipeline in
example_pipelines.md. Generate larger dataset
—--max_num_images=7000 with Guided Diffusion, train
against public images, perform attack, and assess attack
performance.

Results: Guided Diffusion Wm vs Public perfor-
mance metrics (PRC-AUC, ROC-AUC, Accuracy,
TPR@1%FPR) and image quality scores (LPIPS, CLIP,
FID) stored in summary.json under the assessment
logs directory. If no changes were made to the
--run_name parameter, the directory created will have
"wmvspub_guided_diffusion” in its name.

(E15:) Precision vs Base Rate [20 human-minutes + 1GB
disk]: Plotting the precision at different TPR @X%FPR
cutoffs against several base rates.

How to: Follow the "Precision vs Base Rate
Plot" example in example_pipelines.md. Call
precision_at_base_rate.py with --table_path
set to the path to a metadata.csv file after
assess_images.py completes.

Setup: The assumption here is that you have atleast one
experiment where assess_images.py has completed.
After which, the logger object will create a csv file under
the experiment results directory in the logs directory
which contains the measurement metric for deciding the
validity of a watermark.

Results: This will generate a single plot for an attack
where we selected 4 TPR@X%FPR cut off points and
plotted the precision against a set of base rates.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.
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