
USENIX Security ’25 Artifact Appendix: CloudFlow: Identifying
Security-sensitive Data Flows in Serverless Applications

Giuseppe Raffa
Royal Holloway University

Jorge Blasco
Universidad Politécnica

Dan O’Keeffe
Royal Holloway University

Santanu Kumar Dash
University of Surrey

A Artifact Appendix

This artifact appendix is dedicated to CloudFlow and
CloudBench. The first is a serverless-specific static analysis
framework, whilst the second is a suite of microbenchmarks
used for the evaluation of CloudFlow.

A.1 Abstract

In our paper, we present CloudFlow, a novel framework to
statically detect security-sensitive data flows in serverless
applications. To achieve this, CloudFlow leverages the infras-
tructure definition provided by the developer to identify the
events, permissions and entry points of an application. We
evaluate our framework against a new suite of 40 microbench-
marks, CloudBench. Furthermore, we analyse 104 real-world
applications selected from AWSomePy, a recent dataset. To
the best of our knowledge, this is the largest security-focused
analysis of serverless applications to date. Our results show
that CloudFlow passes all microbenchmarks, apart from three,
and detects 11 code injection and information leakage vulnera-
bilities in the analysed real-world applications. To support the
verification of the functionality of our framework and the re-
producibility of our results, we open-source both CloudFlow
and CloudBench. In addition, we provide a ready-to-use en-
vironment that facilitates their execution. Finally, we make
available for future reference a report detailing the security-
sensitive data flows identified in AWSomePy.

A.2 Description & Requirements

The artifact presented in this appendix consists of two com-
ponents. The first is a Linux Ubuntu 20.04 Virtual Ma-
chine (VM) that contains the source code of CloudFlow
and CloudBench as well as a pre-processed version of
AWSomePy. The VM also includes the installation of the
CloudFlow command-line utility and Pysa, the underlying
static analysis tool used in our framework. The second compo-
nent is the data flow report of the AWSomePy dataset analysis.
This includes the information obtained from CloudFlow and

our observations on the manually assessed security-sensitive
data flows.

A.2.1 Security, privacy, and ethical concerns

The usage of CloudFlow and CloudBench does not involve
taking any destructive steps. With regard to the vulnerabilities
discussed in §5.2 and §5.3 of our paper, they were responsibly
disclosed in November 2024. More information on this topic
can be found in the Ethics Considerations section of the paper.

A.2.2 How to access

Our artifact is available on Zenodo at the following address:

• https://doi.org/10.5281/zenodo.15609299

The provided VM is password-protected, and it can be
accessed as follows:

• User: Giuseppe Raffa

• Password: USENIX2025

We recommend importing the VM in a recent version of
VirtualBox™. If the Ubuntu desktop does not appear auto-
matically after logging in, we suggest adjusting the window
size from the main VirtualBox interface by clicking on View
➝ Adjust Window Size.

A.2.3 Hardware dependencies

No special hardware is required to run CloudFlow and
CloudBench. However, we recommend allocating 8GB of
RAM to the VM. This value is already configured in the
provided .ova file.

A.2.4 Software dependencies

When we exported our VM, we chose Open Virtualization
Format 2.0, as this was the most recent version of the standard
supported by our hypervisor. While we are not aware of any
limitations relating to the Open Virtualization Format, as

https://doi.org/10.5281/zenodo.15609299


previously mentioned, we recommend importing the VM in a
recent version of VirtualBox.

A.2.5 Benchmarks

CloudBench is the only relevant collection of benchmarks.
We note that CloudBench is included in our VM.

A.3 Set-up

CloudFlow was implemented as a command-line (CLI) utility
that runs within a dedicated Python Virtual Environment (VE).
The latter is available within the folder pysa_experiments
located on the Desktop of the VM. As detailed in §A.3.2, the
VE must be activated before launching the utility. Also, we
recommend deactivating the VE by executing the command
deactivate in the console prior to switching off the VM.

A.3.1 Installation

The shared execution environment is a fully-fledged, ready-
to-use VM. Therefore, no installation is required. The above-
mentioned pysa_experiments folder contains the required
source code within the following folders1:

• awsomepy-serverless: Pre-processed dataset.

• cloudbench: Microbenchmarks suite.

• cloudflow: Framework source code2.

The folder pysa_experiments also contains two VEs3:

• experiments: Main CloudFlow VE. This includes Pyre
version 0.9.10 (package pyre-check).

• venv-sapp: Auxiliary VE for report generation. This
includes SAPP version 0.5.2 (package fb-sapp).

To allow future modifications of our artifact, we note that
our VM includes on its Desktop a folder called pyre-check.
It contains a collection of resources obtained from the Pyre
GitHub repository4. This folder is part of our environment
because we were unable to install and configure Pyre in such
a way that those resources were automatically detected. We
emphasize that CloudFlow does not work without that folder.

1To improve their accessibility, our source code and dataset are also
included in a ZIP archive stored in Version v1 of the Zenodo record.

2Note that all the CloudFlow configuration files are stored within the
folder pysa_experiments/cloudflow/cloudflow/config.

3CloudFlow activates the auxiliary VE to use the APIs of the SAPP
reporting tool. We made this choice due to installation problems experienced
while trying to make Pyre and SAPP available within the same VE.

4https://github.com/facebook/pyre-check

A.3.2 Basic Test

The objective of the basic functionality test described in
this section is to check that CloudFlow can be successfully
executed. The test consists of 4 steps:

(S1): VE Activation. Open a CLI window and select the
pysa_experiments folder as the current folder. Acti-
vate the CloudFlow VE by running the following com-
mand: source experiments/bin/activate
Expected Output: The CLI prompt will change, and it
will include the VE name, i.e., experiments, in paren-
thesis.

(S2): VE Content. The content of the VE can be inspected
by executing the following command: pip list
Expected Output: CloudFlow is present in the list of
the packages available in the VE. Specifically, the infor-
mation associated to CloudFlow is the version 0.0.1 and
its local installation path.

(S3): Unit Tests Execution. Our framework includes unit
tests that can be run to exercise most of its modules.
After selecting pysa_experiments/cloudflow as cur-
rent folder, the unit tests can be launched with the fol-
lowing command: pytest -k "not microbenchmarks"
Expected Output: The command executes 79 unit tests.
All of them are expected to pass.

(S4): Single Microbenchmark Execution. With the same
current folder as the previous step, the CloudBench mi-
crobenchmark owasp-serverless-injection can be
run by launching CloudFlow in single repository mode,
i.e., with the -s CLI flag5.
Expected Output: The framework identifies a security-
sensitive data flow between line 12 and line 26 of the
file httphandler.py. The result is displayed in an on-
screen table. Importantly, CloudFlow supports multiple
CLI flags. To access their documentation, execute the
command: cloudflow -h

A.4 Evaluation workflow

In this section, we first summarize the major claims made in
our paper (§A.4.1). Next, we describe a set of experiments
(§A.4.2). Each of these is focused on a specific claim.

A.4.1 Major Claims

In what follows, we list the major claims of our paper:

(C1): CloudFlow passes all the microbenchmarks in the
CloudBench suite, apart from three. The results of our
microbenchmark-based evaluation are reported in §4.2
of our paper.

5cloudflow -s /home/giuseppe/Desktop/pysa_experiments/cloudbench/intra-
procedural/s3-service/owasp-serverless-injection

https://doi.org/10.5281/zenodo.15609300
https://github.com/facebook/pyre-check


(C2): CloudFlow detects 205 security-sensitive data flows
in 104 AWSomePy applications. We analyse such data
flows in §5.2 of our paper. We note that the AWSomePy
dataset contains 145 applications in total. However, we
focus our attention on 104 of them after an initial triage,
summarized in Table 3 of the paper.

(C3): CloudFlow identifies 11 vulnerabilities in the analysed
AWSomePy applications. Such vulnerabilities are sum-
marized in Table 5 of our paper. The latter also includes
two vulnerability case studies in §5.3.

A.4.2 Experiments

In this section, we describe the proposed experiments.

(E1): Microbenchmark-based Evaluation. We estimate: 2
compute-hours + 5 human-minutes. This experiment is
designed to validate our claim C1.
Description: CloudFlow is launched in microbench-
mark mode, i.e., with a CLI flag that allows executing
all the CloudBench microbenchmarks. The analysis of
the results is performed by running a PyTest module.
Preparation: Ensure that the CloudFlow VE is active
(§A.3.2) and that pysa_experiments/cloudflow is
the current folder.
Execution: Two steps are required. First, launch the ex-
ecution of all CloudBench microbenchmarks with the
command: cloudflow -mb all. Second, when the execu-
tion of the microbenchmarks is complete, run the rel-
evant PyTest module as follows: pytest -k microbench-
marks
Results: Check that the PyTest on-screen summary re-
ports that three microbenchmarks out of 40 have failed.
The names of the failed microbenchmarks are specified
in §4.2 of our paper6.

(E2): Security-sensitive Data Flows in AWSomePy. We
estimate: 5 compute-hours + 30 human-minutes. This
experiment is designed to validate our claim C2.
Description: CloudFlow is launched in multiple repos-
itory mode, i.e., with the -m CLI flag, and generates a
report. The latter needs to be compared with the report
available on Zenodo.
Preparation: Same as the previous experiment.
Execution: Launch the analysis of the AWSomePy
dataset7. Unlike the previous experiment, CloudFlow is
launched with the additional -cf flag, used to specify a re-
quired configuration file. At the end of the execution, the
framework generates a data flow report within the folder
pysa_experiments/cloudflow-report-files.
Results: To correctly compare the report generated by
this experiment with that available on Zenodo, we ob-

6For a shorter on-screen report: pytest -k microbenchmarks --tb=no
7cloudflow -m /home/giuseppe/Desktop/pysa_experiments/awsomepy-

serverless/repositories -cf awsomepy_dataset_config_file.yml

serve that the latter contains:
• A total of 222 data flows. These include those de-

tected in applications filtered out during our dataset
triage as well as others categorized as invalid. The
205 data flows mentioned in claim C2 are those
classified as Valid in the column Assessment. We
expect that the execution of this experiment will
identify the same 222 data flows, as the folder
awsomepy-serverless (§A.3.1) includes all the
AWSomePy applications for completeness.

• Six columns not generated by CloudFlow (from
Assessment to Comments). We make these columns
publicly available to better document our analysis.

(E3): Vulnerabilities in AWSomePy. We estimate: 3.5
human-hours8. This experiment is designed to validate
our claim C3.
Description: This experiment requires manually vali-
dating at least a sample of the 11 security-sensitive data
flows classified as vulnerabilities in the report available
on Zenodo. These are marked with the value Yes in the
column Security Vulnerability.
Preparation: Download the report in CSV format avail-
able on Zenodo. This includes all the required informa-
tion, e.g., the location of sources and sinks.
Execution: Analysis of at least a sample of the security-
sensitive data flows classified as vulnerabilities. With
regard to the case studies discussed in §5.3 of the paper,
we observe that9:

• The Code Injection via HTTP case study refers to
the vulnerabilities found in the application with
identifier 040AA.

• The Exception Traceback Leakage case study refers
to the vulnerabilities found in the application with
identifier 022AA.

Results: We expect the manual validation to confirm
the identified vulnerabilities. We note that the vulnera-
bilities found in the applications 040AA and 140AA are
associated with data flows featuring the same source and
sink. To the best of our knowledge, they are reported
twice by Pysa because two data flows connecting the
source with the sink are detected. Therefore, we consider
these as separate data flows.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

8Estimate based on the assumption that the validation of a data flow takes,
on average, 20 minutes, and that all the relevant data flows are validated.

9Note that the code listings provided in the paper to illustrate our case
studies are simplified versions of the actual application code.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


