
USENIX Security ’25 Artifact Appendix:
Practically Secure Honey Password Vaults:

New Design and New Evaluation against Online Guessing

Haibo Cheng1, Fugeng Huang1, Jiahong Yang1, Wenting Li2, Ping Wang1

1Peking University 2Beijing Institute of Graphic Communication

A Artifact Appendix

A.1 Abstract

This paper evaluates the distinguishability and practical se-
curity of existing honey password vault schemes using a
large-scale dataset. We also propose a novel scheme based
on the Transformer model. Our analysis shows that existing
schemes are highly vulnerable to distinguishability attacks,
with text classification algorithms (especially pre-trained mod-
els) achieving 83.75%–95.79% accuracy. In contrast, our
Transformer model generates more plausible decoy vaults,
limiting attack accuracy to no more than 64.35%. For practi-
cal security against online guessing, our model excels, with
an average of only 0.51 accounts cracked per 1,000 attempts,
which can be further reduced to 0.11 with two simple mea-
sures.

A.2 Description & Requirements

This artifact provides both the source code and a comprehen-
sive large-scale dataset for honey vault research. The code
includes implementations of three honey vault schemes (Golla
et al., Cheng et al., and ours), existing and proposed attack
algorithms, and security evaluations with accompanying plot-
ting scripts. The dataset consists of 7 million password vaults.

A.2.1 Security, Privacy, and Ethical Concerns

Our artifact does not perform any harmful operations on the
host machines, nor does it disable any security mechanisms
during execution. To protect user privacy, the dataset has
been sanitized to remove usernames and directly identifiable
information, and is provided in encrypted form with restricted
access.

A.2.2 How to Access

Both the source code and dataset are hosted on Zenodo. The
source code is publicly available at https://doi.org/10
.5281/zenodo.15612143, while the dataset is accessible

at https://doi.org/10.5281/zenodo.15646753 under
restricted access.

A.2.3 Hardware Dependencies

This artifact requires an NVIDIA GPU with at least 24GB
VRAM and CUDA 11.8 support (e.g., NVIDIA RTX 3090). A
minimum of 80 GB of system RAM and 50 GB of disk storage
are also necessary. While no specific CPU model is strictly
mandated, a CPU with at least 20 cores is recommended.

A.2.4 Software Dependencies

Our experiments were conducted and tested on Ubuntu Linux
22.04, utilizing CUDA 11.8, Anaconda, and Python 3.10. All
additional software dependencies can be installed during the
setup phase.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

1. Download and extract the code and dataset archives
from Zenodo (see A.2.2). Place the three files of the
full dataset into the src/honeyvault/data directory
within the extracted artifact.

2. Navigate to the extracted artifact directory. Execute the
following commands to set up a Conda environment and
install necessary dependencies:

conda create -n py310 python=3.10 -y
conda activate py310
pip install -r req_clean.txt
pip install "protobuf>=3.20.0,<4.0.0"

You may encounter warnings about dependency con-
flicts; please disregard them, as the artifact has been
tested with these specific dependency versions.

mailto:hbcheng@pku.edu.cn
mailto:huangfugengg@gmail.com
mailto:jiahongyang@pku.edu.cn
mailto:wentingli@pku.edu.cn
mailto:pwang@pku.edu.cn
https://doi.org/10.5281/zenodo.15612143
https://doi.org/10.5281/zenodo.15612143
https://doi.org/10.5281/zenodo.15646753

3. Generate a Wolfram Alpha API key by following the
instructions at https://reference.wolfram.com/
language/WolframClientForPython/docpages
/basic_usages.html#generate-a-secured-a
uthentication-key. Insert this key into line 17 of
src/honeyvault/CONFIG_RCDF.py. This key is essen-
tial for the vault model fitting process within the scheme
proposed by Cheng et al. (2021).

A.3.2 Basic Test

Upon successful installation, verify the artifact’s basic func-
tionality by executing the following command:

python src/honeyvault/__main__.py

This command initiates a default quick-start workflow using
a small synthetic dataset. The workflow encompasses training
for three honeyvault models, attack model training, online at-
tack evaluation, and result plotting. Expect this entire process
to take approximately one hour.

Upon successful execution, the terminal output should dis-
play messages similar to The merged PDF is saved to
x/xx/xxx.pdf. For verification, manually inspect one of the
generated PDF plots to confirm its general resemblance to
Figure 6 in the paper. Note that the exact curve shapes may
vary.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): For traditional evaluation of honeyvault schemes
against distinguishing attacks, our DeBERTa-based at-
tack achieves the highest accuracy among both existing
and our proposed attacks. This is demonstrated by Ex-
periment (E2) (Section 6.2) and depicted in Figure 5 and
Table 3.

(C2): Our scheme exhibits superior resistance against distin-
guishing attacks. This is demonstrated by Experiment
(E2) (Section 6.2) and depicted in Figure 5 and Table 3.

(C3): For practical evaluation of honeyvault schemes against
online guessing attacks, our DeBERTaBase attack
achieves the best performance. This is demonstrated by
Experiment (E1) (Section 6.3) and depicted in Figures
6-14 and Table 7.

(C4): For practical evaluation of honeyvault schemes against
online guessing attacks, our scheme achieves the best se-
curity. This is demonstrated by Experiment (E1) (Section
6.3) and depicted in Figures 6-14 and Table 7.

(C5): Our two simple measures significantly enhance the
security of all three honeyvault schemes against online
guessing. This is demonstrated by Experiment (E1) (Sec-
tion 6.3) and depicted in Table 5 and Table 7.

A.4.2 Experiments

It is strongly recommended to execute the experiments sequen-
tially as listed below, as the initial experiment (E1) automates
the training of honeyvault and attack models.
(E1): [Online Guessing] [5 human-minutes + 3 compute-

weeks]:
Preparation: Adjust the configuration to
match the paper’s experimental setting. In
src/honeyvault/CONFIG_Online_quick_start.py,
comment out the QuickStart block and uncomment
the Paper block. For deep learning-based attacks,
only the optimal one (DeBERTaBase) is executed by
default; alternatively, modify the DL_model variable in
src/honeyvault/__main__.py:57 to include other
deep learning-based attacks.
Execution: Execute the following command:

python src/honeyvault/__main__.py

Results: Results will be saved in the
src/honeyvault/attack/leaky_detection/leak_pic
directory. This directory will contain multiple subdirec-
tories, each named to indicate different experimental
conditions:

• A name containing honey_num_0 indicates Mea-
sure II is disabled, while honey_num_2 indicates it
is enabled.

• A name including LIMIT_WEB=False signifies that
Measure I is not applied, whereas LIMIT_WEB=True
signifies its application.

• A name including ENHANCE_MPW=False implies
that a strong master password is not enforced, while
ENHANCE_MPW=True implies its enforcement.

• A name containing defender_attack indicates the
ideal case, while defender_attack_practical
indicates the practical case.

Within the deepest subdirectory, attack curves are
saved in three PDF files. Files named with 2016,
2021, and transformer correspond to the schemes by
Golla et al., Cheng et al., and our proposed scheme,
respectively. The precise average number of cracked
accounts under 10, 100, 1000 login attempts are saved in
JSON files named max_y_with_pos_2016.json,
max_y_with_pos_2021.json, and
max_y_with_pos_transformer.json for each
scheme. The correspondence between figures and tables
in the paper and their respective result files is detailed in
Table 1.

(E2): [Distinguishing Attacks] [5 human-minutes + 2
compute-hours]:
Preparation: Adjust the configuration to
match the paper’s experimental setting. In
src/honeyvault/CONFIG_RCDF.py, comment out
the Quick_start block and uncomment the Paper
Config block (around line 25). Similar to E1, only the

https://reference.wolfram.com/language/WolframClientForPython/docpages/basic_usages.html#generate-a-secured-authentication-key
https://reference.wolfram.com/language/WolframClientForPython/docpages/basic_usages.html#generate-a-secured-authentication-key
https://reference.wolfram.com/language/WolframClientForPython/docpages/basic_usages.html#generate-a-secured-authentication-key
https://reference.wolfram.com/language/WolframClientForPython/docpages/basic_usages.html#generate-a-secured-authentication-key

optimal deep learning-based attack (DeBERTaBase)
is run by default; modify the DL_model variable
in src/honeyvault/attack/__main__.py:319 to
include other deep learning-based attacks if desired.
Execution: Execute the following commands:

cd src/honeyvault
python -m attack
python draw_picture_final_v2.py

Results: Results will be saved in the
src/honeyvault/result/final directory. RCDFs
are saved as three PDF files. Files named with 2016,
2021, and transformer correspond to the schemes by
Golla et al., Cheng et al., and our proposed scheme,
respectively. The accuracy α or AUC of distinguishing
attacks against honey vault schemes are saved in
700w_average_ranks.csv. The correspondence
between figures and tables in the paper and their
respective result files is also detailed in Table 1.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

Table 1: Summary of the major claims and experiments.

Claim Exp. Figure or
table in the paper Corresponding result files

C3,
C4,
C5

E1

Figure 6
$PATH_E1/defender_attack/honey_num_0_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=False/3_attack_curves_p0_*.pdf

Table 4 and Table 5: None
$PATH_E1/defender_attack/honey_num_0_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=False/max_y_with_pos_*.json

Figure 7
$PATH_E1/defender_attack_practical/honey_num_2_attack_op/ENHAN
CE_MPW=False_LIMIT_WEB=True/3_attack_curves_p0_*.pdf

Tables 5 and 7:
M1 & M2 (Practical Case)

$PATH_E1/defender_attack_practical/honey_num_2_attack_op/ENHAN
CE_MPW=False_LIMIT_WEB=True/max_y_with_pos_*.json

Figure 8
$PATH_E1/defender_attack/honey_num_0_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=True/3_attack_curves_p0_*.pdf

Tables 5 and 7:
M1

$PATH_E1/defender_attack/honey_num_0_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=True/max_y_with_pos_*.json

Figure 9
$PATH_E1/defender_attack/honey_num_2_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=False/3_attack_curves_p0_*.pdf

Tables 5 and 7:
M2 (Ideal case)

$PATH_E1/defender_attack/honey_num_2_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=False/max_y_with_pos_*.json

Figure 10
$PATH_E1/defender_attack_practical/honey_num_2_attack_op/ENHAN
CE_MPW=False_LIMIT_WEB=False/3_attack_curves_p0_*.pdf

Tables 5 and 7:
M2 (Practical case)

$PATH_E1/defender_attack_practical/honey_num_2_attack_op/ENHAN
CE_MPW=False_LIMIT_WEB=False/max_y_with_pos_*.json

Figure 11
$PATH_E1/defender_attack/honey_num_0_attack_op/ENHANCE_MPW=Tru
e_LIMIT_WEB=False/3_attack_curves_p0_*.pdf

Tables 5 and 7:
MPW

$PATH_E1/defender_attack/honey_num_0_attack_op/ENHANCE_MPW=Tru
e_LIMIT_WEB=False/max_y_with_pos_*.json

Figure 12
$PATH_E1/defender_attack/honey_num_2_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=True/3_attack_curves_p0_*.pdf

Tables 5 and 7:
M1 & M2 (Ideal Case)

$PATH_E1/defender_attack/honey_num_2_attack_op/ENHANCE_MPW=Fal
se_LIMIT_WEB=True/max_y_with_pos_*.json

Figure 13
$PATH_E1/defender_attack/honey_num_2_attack_op/ENHANCE_MPW=Tru
e_LIMIT_WEB=True/3_attack_curves_p0_*.pdf

Tables 5 and 7:
M1 & M2 (Ideal Case) & MPW

$PATH_E1/defender_attack/honey_num_2_attack_op/ENHANCE_MPW=Tru
e_LIMIT_WEB=True/max_y_with_pos_*.json

Figure 14
$PATH_E1/defender_attack_practical/honey_num_2_attack_op/ENHAN
CE_MPW=True_LIMIT_WEB=True/3_attack_curves_p0_*.pdf

Tables 5 and 7:
M1 & M2 (Practical Case) & MPW

$PATH_E1/defender_attack_practical/honey_num_2_attack_op/ENHAN
CE_MPW=True_LIMIT_WEB=True/max_y_with_pos_*.json

C1,
C2

E2
Figure 5 src/honeyvault/result/final/700w_*_attack_result.pdf

Table 3 src/honeyvault/result/final/700w_average_ranks.csv

* The variable $PATH_E1 expands to the path src/honeyvault/attack/leaky_detection/leak_pic.

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

