
USENIX Security ’25 Artifact Appendix: BGP Vortex: Update Message
Floods Can Create Internet Instabilities

Felix Stöger, Henry Birge-Lee, Giacomo Giuliari, Jordi Subira-Nieto, Adrian Perrig

A Artifact Appendix

A.1 Abstract

We provide a comprehensive artifact containing all the re-
sources necessary to reproduce our results from sections 4
and 5 of our work. It is available to download as a ZIP archive
via a persistent URL (appendix A.2.2).

A.2 Description & Requirements

The artifact submission contains all scripts and configurations
required for evaluation. The ZIP archive contains two folders
for replicating results from sections 4 and 5 respectively. Each
folder includes a comprehensive README with step-by-step
execution instructions and requirements. The artifact provides
complete attack simulation components: router configurations,
orchestration scripts, and notebooks for data analysis.

Replication of our experiments requires 8 virtual machines.
We used DigitalOcean for evaluation. The experiments gen-
erate several hundred gigabytes of data, compressed to ap-
proximately 50GB. The setup runs on standard VMs using
common software packages (e.g., Jupyter Lab), requiring no
specialized hardware or software. For the functional and re-
produced artifact evaluation, we will provide you with 8 VM
instances to ensure the setup is indeed identical to the one
used for the experiments. Please contact us, so we can set the
VMs up and give you access. To analyze the results, we rec-
ommend a machine running Ubuntu 24.04 LTS with a modern
CPU, sufficient RAM (16GB minimum) and 100-200GB disk
space.

A.2.1 Security, privacy, and ethical concerns

The experiments are self-contained and isolated from any
public routing infrastructure. The amount of traffic generated
is normal, so our experiments also do not negatively affect
the cloud provider.

A.2.2 How to access

You can access the artifacts via the following stable link to
Zenodo: https://doi.org/10.5281/zenodo.15612433.

A.2.3 Hardware dependencies

Our experimental setup uses DigitalOcean VMs to eliminate
hardware dependencies and ensure reproducibility. For lo-
cal replication, we recommend matching the following VM
specifications:

• 3x CPU-Optimized / 8 GB / 4 vCPUs: VMs host-
ing the three ASes not directly part of the BGP Vortex:
bystander-as, upstream-as, and downstream-as. Each of
these ASes runs the FRR router.

• 4x Memory-Optimized / 16 GB / 2 vCPUs: VMs host-
ing the four ASes of the BGP Vortex: attacker-as, and its
three providers as-1, as-2, and as-3. Each of these ASes
runs the BIRD router.

• 1x Storage-Optimized / 16 GB / 2 vCPUs: VM used
for orchestration and data gathering.

The machine on which you intend to evaluate the results
of the experiments should be equipped with a modern CPU,
sufficient RAM (16GB minimum) and 100-200GB disk space.

A.2.4 Software dependencies

Our experiments run on Ubuntu 24.04 LTS and require BIRD
and FRR software routers, iperf3, and tcpdump. Data analysis
uses Tshark and Jupyter-Lab, with the following Python pack-
ages: matplotlib, mrtparse, pandas, numpy, and seaborn.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Step 1: Set up local environment Extract the artifact to the
machine on which you also intend to perform the analysis of
the experiment data. All subsequent directory references are
relative to the artifact root unless specified otherwise.

https://doi.org/10.5281/zenodo.15612433

Step 1: Configure VMs. First, provision eight virtual ma-
chines with the aforementioned specifications. Ensure co-
location within a single data center and, when utilizing cloud
infrastructure, verify virtual private cloud (VPC) support. Es-
tablish SSH connectivity to all instances and confirm inter-
VM communication via private IP addresses.

Afterwards, copy the public and pri-
vate IP addresses for each VM into
artifact/section_5/generation/ips_map.json as
detailed in the Section 5 README.

Lastly, install FRR, BIRD, and tcpdump on all VMs. On
the machine on which you intend to analyze the results, also
install tshark and the following Python packages: matplotlib,
mrtparse, pandas, numpy, and seaborn.

Step 2: Generate Configuration
Files and Scripts. Execute the
artifact/section_5/generation/generate_output.py
script from within the generation folder on your local ma-
chine. This populates the output folder with configuration
files specific for your deployment.

Step 3: Deploy Configuration to VMs. Execute the
artifact/section_5/generation/push_configs.py
script from within the generation folder on your local
machine to deploy the generated configuration files to the
VMs.

Step 4: Establish Network Topology. Configure GRE
tunnels connecting the upstream-AS, bystander-AS, and
downstream-AS. To that end, SSH into the fetcher VM and
execute bash set_up_gretaptunnels.sh. Subsequently,
SSH into the upstream-AS and bind the IP address
192.168.10.1 to its loopback interface. Repeat this step for
the downstream-AS with IP 192.168.11.1.

A.3.2 Basic Test

SSH into the fetcher VM, navigate
into the utils folder and execute
bash trigger_sending_K_mins.sh 0 0 2 200 8000.
The expected output is:

Initializing experiment with 0 prefixes,
200% CPU,and 8000MB memory for 0 minutes.
Setting resource constraints on bystander-as
DEBUG: killing existing instance of
assignResources.sh on the bystander-as
DEBUG: Executing command:
ssh bystander-as "nohup bash ~/assignResources.sh
${cpuCores} ${cpuShare} ${memory} ${swapMemory}
>/dev/null 2>&1 &"
Setting resource constraints on downstream-as
DEBUG: killing existing instance of

assignResources.sh on the bystander-as
DEBUG: Executing command
ssh bystander-as "nohup bash ~/assignResources.sh
${cpuCores} ${cpuShare} ${memory} ${swapMemory}
>/dev/null 2>&1 &"
Setting resource constraints on upstream-as
DEBUG: killing existing instance of
assignResources.sh on the bystander-as
DEBUG: Executing command:
ssh bystander-as "nohup bash ~/assignResources.sh
${cpuCores} ${cpuShare} ${memory} ${swapMemory}
>/dev/null 2>&1 &"
bird_attacker.conf 100% 4340 2.1MB/s 00:00
Started experiment!
Experiment finished, stopping!
DEBUG: killing existing instance of
assignResources.sh on the bystander-as

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): BGP Vortices are widespread on today’s Internet
(Section 4). We demonstrate this by identifying BGP
Vortices in the CAIDA AS-relationship based on known
vulnerable ASes.

(C2): BGP Routers are susceptible to BGP Vortices (Sec-
tion 5.2). We demonstrate the vulnerability of widely
deployed, industry-standard router implementations.

(C3): BGP Vortices delay network convergence (Section
5.3). We create a BGP Vortex in our testbed and measure
route update propagation delay, demonstrating that crit-
ical routing information dissemination is delayed, thus
prolonging convergence.

(C4): BGP Vortices overload routers (Section 5.4). We
show that our experimental setup, routers fail to keep up
with the rate at which route updates would be sent, as
evidenced by TCP receive window sizes reaching zero.

(C5): BGP Vortices cause data plane outages (Section 5.5).
We create a BGP Vortex in our testbed, measure data
plane connectivity using iperf3, simulate route changes,
and quantify data plane outage duration.

A.4.2 Experiments

In this section, we describe how to replicate our experiments
and how to analyze the results. We encourage the reader to
consult the READMEs provided inside the artifact, which
include more detailed step-by-step instructions.
(E1): BGP Vortices are widespread on today’s Internet

(Section 4). [5 human-minutes + 5 compute-seconds]:
Preparation: No preparation required, assuming prior
instructions were followed and dependencies installed.
Execution: Execute the following commands from

within the artifact/section_4/evaluation/ direc-
tory:
Count analysis
python run.py -t data/20240301.as-rel.txt
-a data/sico_ases.txt count

Downstream analysis:
python run.py -t data/20240301.as-rel.txt
-a data/sico_ases.txt downstream

Results: The count analysis computes the number of
BGP Vortices (gadgets) each of the 21 vulnerable ASes
is included in. The downstream analysis computes the
number of updates seen by every AS in the customer
cone of the 21 vulnerable ASes. Both results together
correspond to insights from section 4 of our paper, and
thus prove claim C1.

(E2): BGP Routers are susceptible to BGP Vortices (Sec-
tion 5.2).: We do not provide an explicit experiment,
since the subsequent experiments generate BGP Vortices
and thus also prove that BGP routers are susceptible.

(E3): BGP Vortices delay network convergence (Section
5.3). [15 human-minutes + > 1 compute-day]
Preparation: No preparation required, assuming prior
instructions were followed and dependencies installed.
Execution: To initiate the experiment, SSH into the
fetcher VM and execute bash cp_experiment.sh 2
tcpdump. The experiment requires substantial time; we
recommend execution within a tmux instance (on the
fetcher VM) to maintain session persistence. Record
the experiment identifier as it is needed for subsequent
evaluation.
Results: To analyze the experiment, first retrieve data
from the fetcher VM by executing the following com-
mand from the artifact/section_5/evaluation/
directory:
scp -r root@<fetcher VM IP>:
~/data/dataplane_experiment/<exp. id>
./experiment_data/<ex. id>

Each experiment generates a separate file for 100% and
200% CPU share (1 and 2 CPU cores) and for 0, 50,
100, 600, 1000, 3000, and 5000 attacker prefixes. Pro-
cessing each file sequentially is highly inefficient, so
instead we provide a script that should be executed
in parallel for each combination of CPU share and at-
tacker prefix count (14 combinations total). Execute the
following commands for each combination from the
artifact/output/extraction/ directory:
python3 parallel_tcpdump_extraction.py
<exp. id> bystander-as
<cpu share> <num attack pfx> arrival_times

python3 parallel_tcpdump_extraction.py

<exp. id> upstream-as
<cpu share> <num attack pfx> arrival_times

To analyze data and generate plots comparable to those
presented in the paper, launch a jupyter-lab instance in
the artifact/section_5/evaluation directory and
execute all cells in section_5_3.ipynb. Ensure the
experiment identifier is correctly configured in the des-
ignated notebook cell.

(E4): BGP Vortices overload routers (Section 5.4). [15
human-minutes + several compute-hours]

Preparation: No preparation required, assuming prior in-
structions were followed and dependencies installed.

Execution: No execution required; this experiment reuses
results from experiment E3.

Results: Each experiment contains data for 100% and 200%
CPU share (1 and 2 CPU cores) and for 0, 50, 100, 600,
1000, 3000, and 5000 attacker prefixes. Given the compu-
tational complexity of processing each file, we provide a
script for parallel execution across all combinations of
CPU share and attacker prefix counts (14 combinations
total). Execute the following command for each com-
bination from the artifact/output/extraction/ di-
rectory:
python3 parallel_tcpdump_extraction.py
<exp. id> bystander-as <cpu share>
<num attack pfx> zerowindows

To analyze the data and generate plots corresponding to
those in the paper, launch a jupyter-lab instance in the
artifact/evaluation folder and execute all cells in
section_5_4.ipynb. Verify the experiment identifier
is correctly configured in the designated notebook cell.

(E5): BGP Vortices cause data plane outages (Section 5.5).
[15 human-minutes + >1 compute-day]

Preparation: No preparation required, assuming prior in-
structions were followed and dependencies installed.

Execution: To initiate the experiment, SSH into the fetcher
VM and execute bash dp_experiment.sh 2. The ex-
periment requires substantial time; we recommend ex-
ecution within a tmux instance (on the fetcher VM) to
maintain session persistence. Record the experiment
identifier as it is needed for subsequent evaluation.

Results: To analyze the experiment, you first have to re-
trieve the data from the fetcher VM. This is achieved
by executing the following command from within the
artifact/section_5/evaluation/ directory:
scp -r root@<fetcher VM IP>:
~/data/dataplane_experiment/<exp. id>
./experiment_data/<ex. id>

Each experiment holds data for 100% and 200% CPU
share (1 and 2 CPU cores), and for 0, 50, 100, 600,
1000, 3000, and 5000 attacker prefixes. Since process-

ing each file takes a long time, we provide a script
which we encourage to execute in parallel for each
combination of CPU share and number of attack pre-
fixes (14 times in total). Do so by executing the fol-
lowing line for each such combination, from within the
artifact/output/extraction/ directory:
To analyze data and generate plots comparable to those
presented in the paper, launch a jupyter-lab instance in
the artifact/section_5/evaluation directory and
execute all cells in section_5_5.ipynb. Ensure the
experiment identifier is correctly configured in the des-
ignated notebook cell.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

