ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security *25 Artifact Appendix: Precise and Effective Gadget
Chain Mining through Deserialization Guided Call Graph Construction

Yiheng Zhang!2, Ming Wen!->", Shunjie Liu?, Dongjie He*, and Hai Jin!>

'National Engineering Research Center for Big Data Technology and System, Services Computing
Technology and System Lab, Huazhong University of Science and Technology (HUST)
2Hubei Engineering Research Center on Big Data Security, Hubei Key Laboratory of Distributed System
Security, School of Cyber Science and Engineering, HUST, China
3Cluster and Grid Computing Lab, School of Computer Science and Technology, HUST, China
4Chonggqing University, China

A Artifact Appendix
A.1 Abstract

Our artifact, FLASH, is a tool designed to detect poten-
tial gadget chains in Java applications by constructing
deserialization-guided call graphs. FLASH begins with a novel
Deserialization-Driven Controllability Analysis, which deter-
mines whether variables can be restored through deserializa-
tion. Based on the controllability of variables, FLASH per-
forms a series of downstream tasks, including hybrid dispatch
and reflection analysis, thereby building a more comprehen-
sive and precise deserialization call graph. Utilizing the de-
serialization call graph, FLASH applies an existing detection
algorithm [1] to identify gadget chains.

Evaluation conducted on benchmarks demonstrates that
FLASH achieves higher recall (with 30.8% lower false nega-
tive rate) and precision (with 25.9% lower false positive rate)
than state-of-the-art methods in gadget chain detection, at
the cost of limited overhead. Moreover, FLASH successfully
discovers 90 new gadget chains.

A.2 Description & Requirements

This section provides essential information regarding the us-
age of FLASH, including its access link, required software
dependencies such as the Java runtime environment or Docker,
the location of the benchmark used in our experiments, and
safety considerations when verifying the exploitability of de-
tected gadget chains.

A.2.1 Security, Privacy, and Ethical concerns

It is important to note that the execution of a gadget chain
ultimately triggers dangerous functions. Therefore, when ver-

*Ming Wen is the corresponding author

ifying the exploitability of a gadget chain, we replace the
malicious payload with a benign command (e.g., opening a
calculator or referencing a non-existent address) to ensure
safety.

A.2.2 How to Access

We have open-sourced FLASH on Zenodo at https://doi.
org/10.5281/zenodo.15606159, where it is publicly avail-
able for download.

A.2.3 Hardware Dependencies

None

A.2.4 Software Dependencies

If users choose to compile and run FLASH from source, a
JDK 17 environment is required. Alternatively, we provide a
pre-built executable version of FLASH and a Docker-based
environment, allowing users to run the tool with only Docker
installed. Additionally, to detect gadget chains under a specific
JDK version, users need to require the corresponding JDK
dependency libraries, which are essential for FLASH to detect
gadget chains and validate the exploitability of the identified
gadget chains.

A.2.5 Benchmarks

To facilitate evaluation, we have open-sourced our bench-
mark of Java applications containing our detected new gad-
get chains in the Flash_GC. zip file. FLASH allows users to
specify target Java applications for analysis and automatically
detects gadget chains contained in these applications.


https://doi.org/10.5281/zenodo.15606159
https://doi.org/10.5281/zenodo.15606159

A.3 Set-up

This subsection primarily introduces the set-up steps required
before using FLASH.

A.3.1 Installation

We recommend using IntelliJ IDEA and JDK 17 to run FLASH
from source code. Specifically, after downloading the source
code, users can open the project directly in IntelliJ IDEA.
Then, users can follow the configuration steps for the Tai-e
framework [3] to set up the project, as described in the official
documentation [2].

A.3.2 Basic Test

To verify that all required components for FLASH are properly
set up, users can perform a functionality test by analyzing a
sample Java application, which requires specifying runtime
parameters in a YAML configuration file. We list and explain
some of the key configuration parameters as follows:

e appClassPath. Users need to specify the target Java
application to be analyzed.

* sources. Users need to specify the entry points for anal-
ysis. The keyword serializable can be used to include
all deserialization-related methods, such as readOb ject,
readExternal. Alternatively, users can specify other
methods for analysis by providing their method signa-
tures.

e filterNonSerializable. Users can configure to filter
out methods whose declaring classes do not implement
java.io.Serializable.

e GC_MAX_LEN. Users can configure the maximum length
of a gadget chain that FLASH will search for during
analysis.

* priori-knowledge. Users need to specify the file that
contains manually created summaries for JDK built-in
APIs (e.g., String and JavaBean).

We include a sample configuration file in our artifact to help
users get started. Users can configure IntelliJ IDEA to pass
this file to FLASH by specifying it with the -options-file
parameter. We also recommend setting VM options such as
-Xss or -Xmx to allocate additional memory to FLASH for
better performance. If FLASH outputs runtime logs (e.g., the
loading of sinks and the number of analyzed methods), it
indicates that it functions correctly and is ready for use.

A.4 Evaluation Workflow

Since our primary focus is on gadget chain detection, this
subsection mainly evaluates the functionality of FLASH in
detecting gadget chains.

A.4.1 Major Claims

(C1): Compared to the state-of-the-art approaches, FLASH
achieves higher recall (with 30.8% lower false negative
rate) and precision (with 25.9% lower false positive rate)
in gadget chain detection. In total, it identifies 90 new
gadget chains. This is demonstrated by experiment (E1),
as described in Section A.4.2. The results are also pre-
sented in Table 1 of our paper.

A4.2 Experiments

(E1): [Gadget Chain Detection] [30 human-minutes + 1

compute-hour + 1GB disk]: This experiment focuses
on detecting potential gadget chains within a specified
application. The expected results are the concrete gadget
chain call stacks. Note that the time estimation refers to
the average time required for analyzing a single target.
Preparation: Users should configure the required pa-
rameters (e.g., the target application to be analyzed) in
accordance with the procedure outlined in Section A.3.2.
Execution: FLASH can be launched by simply running
the IntelliJ IDEA.
Results: The expected results of the experiment are
concrete gadget chains, represented as method call
sequences. For instance: Source#readObject —
Linkl#callee — Sink#sink. It is worth noting that
manual validation is necessary for the detection results.
To facilitate this, users may refer to the gadget chains
and corresponding proof-of-concepts (POCs) examples
included in our benchmark as a basis for constructing
and testing new exploit POCs.

To simplify large-scale analysis, we provide a pre-
configured Docker environment and an accompanying bash
script that automates the gadget chain detection of all Java
applications within a specified directory. If you run the script,
it will naturally require more time.

A.5 Notes on Reusability

First, the deserialization call graph generated by FLASH can
serve as a foundational component for other research direc-
tions, such as fuzzing-based validation. Users can also easily
export and store the generated call graph for further analysis.

Second, FLASH can be easily extended to support other
types of vulnerability detection, such as web injection attacks.
By modifying the configuration file to specify a web API as
the source, and disabling the deserialization-specific analysis
in the code, users can adapt FLASH to new detection scenarios
with minimal efforts.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-



ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

(1]

Xingchen Chen, Baizhu Wang, Ze Jin, Yun Feng, Xiang-
long Li, Xincheng Feng, and Qixu Liu. Tabby: Automated
gadget chain detection for java deserialization vulnera-
bilities. In 2023 53rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN),
pages 179-192. IEEE, 2023.

Tian Tan. Tai-e Reference Documentation,
2025. https://tai-e.pascal-lab.net/docs/
current/reference/en/index-single.html#
setup-tai-e-in-intellij-idea.

Tian Tan and Yue Li. Tai-e: A developer-friendly static
analysis framework for java by harnessing the good de-
signs of classics. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, pages 1093—-1105, 2023.


https://secartifacts.github.io/usenixsec2025/
https://tai-e.pascal-lab.net/docs/current/reference/en/index-single.html#setup-tai-e-in-intellij-idea
https://tai-e.pascal-lab.net/docs/current/reference/en/index-single.html#setup-tai-e-in-intellij-idea
https://tai-e.pascal-lab.net/docs/current/reference/en/index-single.html#setup-tai-e-in-intellij-idea

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


