
USENIX Security ’25 Artifact Appendix: Ariadne: Navigating
through the Labyrinth of Data-Driven Customization Inconsistencies

in Android

Parjanya Vyas
University of Waterloo

parjanya.vyas@uwaterloo.ca

Haseeb Ur Rehman Faheem
University of Waterloo
hfaheem@uwaterloo.ca

Yousra Aafer
University of Waterloo

yousra.aafer@uwaterloo.ca

N. Asokan
University of Waterloo

asokan@acm.org

A Artifact Appendix

A.1 Abstract

Vendor customization of the Android framework is
known to introduce security concerns. One type of cus-
tomization is data-driven, involving changes to access-
controlled framework variables, which we call data hold-
ers. Analyzing the security of data-driven customization
has not been explored in prior work because it faces sev-
eral challenges as it requires modeling implicit access
control (AC) relations among Java objects and their cor-
responding operation semantics. Existing Android AC
inconsistency detection approaches struggle to discover
data-driven AC inconsistencies.

We propose a novel approach, Ariadne, to address
these challenges by (1) constructing an abstract represen-
tation, the AC dependency graph, to model AC relation-
ships among framework data holders, and (2) using it to
detect missing AC enforcement in data holders and their
corresponding APIs. Using two AOSP and 11 custom
ROMs, we show that Ariadne detects 30 unique data-
driven AC inconsistencies which cannot be detected by
existing approaches. Therefore Ariadne can offer more
comprehensive protection by effectively complementing
existing AC inconsistency detection approaches.

This artifact provides a proof-of-concept Java-based
implementation of Ariadne. It takes a decompiled An-
droid ROM as input and constructs an AC dependency
graph. It then infers the expected AC enforcement for
each API using a customized flooding algorithm. Each
inference is assigned a relevance weight that reflects the
tool’s confidence in the inference. Finally, it outputs a
list of APIs where the inferred AC is stronger than the
existing enforcement, reporting only those exceeding a
configurable relevance cutoff.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

No risk present for the evaluators, since the tool simply
performs static analysis on the included dataset of ROMs.

A.2.2 How to access

The latest version of the artifact can be accessed at https:
//doi.org/10.5281/zenodo.15612788.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

The only dependency our tool has is Java 17.

A.2.5 Benchmarks

We provide all the decompiled ROMs used for evaluation
in a directory called ‘dataset’.

A.2.6 Interpreting the output

Each analysis of the individual ROMs performed by Ari-
adne creates a file called ‘apis.csv’ in the ‘Output’ direc-
tory. This file contains two columns:

• API: The name of the API.

• Recommended Access Controls: A list of AC
checks recommended by Ariadne for the API.

Each access control recommendation in the second
column includes the following fields:

https://doi.org/10.5281/zenodo.15612788
https://doi.org/10.5281/zenodo.15612788

fromApi The source API from which the access con-
trol requirement is originated.

acType The type of access control, e.g., Permission,
UID, AppOps, etc.

level The normalized sensitivity level, such as NONE,
NORMAL, DANGEROUS, SYS_OR_SIG.

operator The conditional operator used in the check
(e.g., EQ, GT, LT).

values The hardcoded value compared against in the
check (e.g., permission string, UID).

access type The type of access guarded, such as
GET, SET, MODIFY, etc.

weight The relevance confidence score assigned to the
recommendation.

Example: Consider the CSV entry representing
getExtensions API with a recommended access con-
trol shown in Row 1 of Table 1. This entry indicates
that getExtensions should be guarded by a UID-based
system-level access control, inferred from the related
hasExtension API, with a high confidence score of 0.85.
The absence of this control is flagged as a data-driven
inconsistency by Ariadne.

A.2.7 System used for experiments

All experiments were conducted on a MacBook Pro
equipped with an Apple M3 Pro chip, 18 GB of RAM,
and a 500 GB SSD, running macOS Sequoia.

A.3 Set-up
A.3.1 Installation

We provide the permanent artifact at the Zenodo reposi-
tory mentioned above. For convenience, we also publish
a docker image with all dependencies and setup.
To use the docker image:

1. Ensure docker is installed and available to use
on your machine (https://docs.docker.com/
get-docker/)

2. Run the following command to pull
and run the docker image for Ariadne:
docker run -rm -pull=always -it
parjanyavyas/ariadne:latest

To build and run Ariadne setup from the Zenodo
repository:

1. Install Java 17 and ensure it is available to use.

2. Download the artifact ZIP file and extract it.

3. Create two new sub-folders in the extracted folder
called ‘Input’ and ‘Output’.

A.3.2 Basic Test

Use the following command to run a basic test:
./gradlew startAnalysis
-Dpath="./Sample" -DoutPath="./Output"
-Dorg.gradle.java.home="<JAVA_HOME>"
-Duser.dir="."

After successful completion, verify that the “Output”
directory contains the file ‘apis.csv’ with the content
from Table 1.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Ariadne reports accuracy of 96.6% and 97.5% us-
ing AOSP Pixel 5 (v12) and AOSP Pixel 6 Pro (v13)
respectively. Refer to Section 7.3 whose results are
reported in column 6 of Table 6.

(C2): Ariadne has been used to uncover new inconsisten-
cies in the included custom Android ROMs. Refer
to Section 7.4 whose results are reported in column
5, Row 3-13 of Table 6.

(C3): Ariadne identifies APIs with new AC inconsisten-
cies, and suggests appropriate AC checks, in the
included custom Android ROMs.

A.4.2 Experiments

(E1): [30 human-minutes + 24-240 compute-hours (de-
pending on underlying system used for the experi-
ment) + 10GB disk]: Analyze AOSP ROMs to eval-
uate the accuracy of Ariadne by counting total num-
ber of APIs and inconsistencies in the two AOSP
ROMs. For each of the two AOSP ROMs included
in the dataset, perform the following:
Preparation: Create ‘Input’ and ‘Output’ folders
if they do not already exist. Copy the decompiled
AOSP ROM from dataset to ‘Input’ folder. Clear
the ‘Output’ folder (if not already cleared).
Execution: Run the command as described in the
README:
./gradlew startAnalysis
-Dpath="./Input" -DoutPath="./Output"
-Dorg.gradle.java.home="<JAVA_HOME>"
-Duser.dir="."
Results: The execution should produce an api csv
file for the given ROM. This file can be interpreted
as specified in Section A.2.6.

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

API Name Access Control Annotation
android. service. securespaces. SecureSpacesService.
getExtensions() Ljava/ util/ List;

ACAnnotation {acWithSrc = AccessControlSource{
fromApi = ’android. service. securespaces.
SecureSpacesService. hasExtension(Ljava/ lang/
String;)Z’, ac = ProgrammaticAccessControl{
acType=Uid, level=SYS_OR_SIG, operator=GT,
values=[10000]}}, accessType=GET,
weight=0.8573749999999999}

android. service. securespaces. SecureSpacesService.
getUserRestrictions() Ljava/ util/ List;

ACAnnotation {acWithSrc = AccessControlSource{
fromApi = ’android. service. securespaces.
SecureSpacesService.
getDeviceOwnerUserRestrictions() Ljava/ util/ List;’,
ac = ProgrammaticAccessControl{acType=Uid,
level=SYS_OR_SIG, operator=GT,
values=[10000]}}, accessType=GET, weight=0.95}

Table 1: Access Control Annotations for SecureSpaces APIs

(E2): [2 human-hours + 120-1200 compute-hours (de-
pending on underlying system used for the exper-
iment) + 50GB disk]: Analyze custom ROMs to
identify the inconsistencies detected by Ariadne. For
each of the custom ROMs included in the dataset,
perform the following:
Preparation: Create ‘Input’ and ‘Output’ folders
if they do not already exist. Copy the decompiled
custom ROM from dataset to ‘Input’ folder. Clear
the ‘Output’ folder (if not already cleared).
Execution: Run the command as described in the
README:
./gradlew startAnalysis
-Dpath="./Input" -DoutPath="./Output"
-Dorg.gradle.java.home="<JAVA_HOME>"
-Duser.dir="."
Results: The execution should produce an apis.csv
file for the given ROM. This file can be interpreted
as specified in Section A.2.6. Running the above
command to analyze the Xiaomi Mix 2S ROM in-
cluded in the dataset results in Ariadne identifying
the two inconsistent APIs shown in Table 1, among
other new APIs. This result confirms that Ariadne
can identify these new access control inconsisten-
cies.

A.5 Version
Based on the LaTeX template for Artifact Evalua-
tion V20231005. Submission, reviewing and badging
methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/
usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks
	Interpreting the output
	System used for experiments

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

