
USENIX Security ’25 Artifact Appendix: Towards Internet-Based State
Learning of TLS State Machines

Marcel Maehren1, Nurullah Erinola1, Robert Merget2, Jörg Schwenk1, and Juraj Somorovsky3

1Ruhr University Bochum
2Technology Innovation Institute

3Paderborn University

A Artifact Appendix

A.1 Abstract
In our main paper, we apply state machine learning to TLS de-
ployments on the Internet and introduce techniques to address
challenges arising from the uncontrolled environments. We
further propose a novel methodology for an automated analy-
sis of learned TLS state machines that allows us to identify
vulnerabilities and non-compliant message flows. In a large-
scale study, we collected 1304 state machines of real-world
TLS hosts, uncovering several uncritical deviations, but also
domains vulnerable to padding oracle attacks, and domains
violating the session transcript integrity, potentially enabling
MitM attacks.

This artifact appendix aims to show the functionality of
the state learner we developed to conduct our study. The ex-
periments involve the automated extraction of state machines
from two versions of OpenSSL via Docker. First, we con-
sider OpenSSL 3.4.0 a modern version exhibiting no state
machine issues. Subsequently, we extract a state machine for
OpenSSL 1.0.1j exhibiting an issue similar to the NetScaler
transcript integrity vulnerability we discuss in our paper. For
both versions, the respective experiment runs our automated
analysis to test for issues. Finally, in a third experiment, we
consider the analysis of anonymized state machines contained
in our dataset to illustrate selected issues we observed in our
evaluations.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

We are not aware of any security, privacy, or ethical concerns
arising from running the experiments described below.

A.2.2 How to access

We provide our dataset via Zenodo.1

1https://doi.org/10.5281/zenodo.15520932

A.2.3 Hardware dependencies

For running the experiments, please ensure that the Java Vir-
tual Machine can allocate at least 8GB of RAM.

A.2.4 Software dependencies

The experiments expect the ability to run bash scripts, and
basic Linux CLI tools (wget/curl, awk, git, unzip, and grep).
As part of the setup, Docker must be installed.

A.2.5 Benchmarks

Running the tool for experiment E3 requires about 5 hours of
computational time on a standard consumer grade desktop PC.
Free disk space of 5 GB is required to build Docker images
and for the dataset from our Zenodo repository.

A.3 Set-up
A.3.1 Installation

Please follow the instructions at https://docs.docker.
com/get-started/get-docker/ to install Docker on your
system. Please configure the permissions so that the user exe-
cuting the scripts provided as part of this artifact is allowed
to docker build and docker run. Subsequently, download
and unzip the artifact_experiments.zip file from the
Zenodo repository:

https://doi.org/10.5281/zenodo.15520932

Run the setup.sh script from the root directory of the arti-
fact experiment directory. This script performs the following
steps:

1. Downloads our source code from Zenodo.

2. Builds three Docker images: First, the script builds two
images of OpenSSL 3.4.0 and OpenSSL 1.0.1j combined
with our state learner tool. As part of this process, the
source code fetched from Zenodo will be built using

https://doi.org/10.5281/zenodo.15520932
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/


Maven. Subsequently, the script builds a Docker image
for our CLI tool (State Machine Analysis Tool).

3. Downloads our dataset from Zenodo.

4. Extracts the dataset to experiment_dataset/.

5. Creates output directories for experiments.

6. Executes a basic test to verify the setup (see Sec-
tion A.3.2).

7. Asks if computational steps from E1 and E2 expected to
take 5 hours and 10 minutes should be run immediately.

Note that you can skip the last step and perform the com-
putational steps as part of the experiments later on.

A.3.2 Basic Test

The basic test is automatically executed as part of setup.sh.
It runs the OpenSSL 3.4.0 container with minimal parameters
to quickly verify functionality. The test:

1. Runs our tool to extract a basic state machine using
Docker. As part of this process, the Docker container
will open tmux with two panes showing OpenSSL on
the left and our tool on the right. This test is expect
to finish within 5 minutes. Results will be written to:
experiment_outputs/Basic_Test/alphabet-1/

2. Verifies the creation of three output files:

• OpenSSL3.4.0.xml - The state machine in XML
format

• OpenSSL3.4.0_short.pdf - A visualization of
the state machine

• OpenSSL3.4.0_short.dot - Analysis details in
DOT format

3. Checks that the DOT file indicates that the analyses runs
correctly

Expected output includes messages confirming success-
ful Docker builds, dataset extraction, and verification that all
expected files were created with correct content.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We claim to provide a tool to conduct state learning for
TLS implementations. The tool iterates over different
alphabets to yield increasingly detailed models of the
state machine of an implementation (cf. Section 5 of our
main paper). Throughout the execution, we employ a
cache which achieves a high coverage rate (>=97% for
the individual alphabets).

(C2): We claim to provide an automated analysis for the
detection of state machine issues (cf. Section 5.6 of our
main paper).

(C3): We claim to provide a data set documenting state ma-
chine issues. In particular, we claim to provide state
machines showing hosts ignoring messages, invalid mes-
sage paths leading to a completed TLS handshake, and
padding-dependent behavior possibly enabling a padding
oracle attack. These examples correspond to findings de-
scribed in Sections 7.1.1 to 7.1.3 of our main paper.

A.4.2 Experiments

(E1): Full execution for OpenSSL 3.4.0 [10 human-minutes
+ 5 compute-hours]: this experiment demonstrates state
learning and analysis for a modern, correctly-behaving
TLS implementation.
Preparation: Ensure Docker images are built via
setup.sh. If the 5-hour computational step was not run
during setup, E1.sh will execute it.
Execution: Run ./experiments/E1.sh from the
repository directory. The script will:

• Check if the state machine already exists from setup
• If not, run the 5-hour learning process
• Execute the automated analysis
• Demonstrate tracing through the state machine with

duplicate ClientHellos and unexpected certificates
Results: The automated analysis should report no issues
beyond Internal Error alerts. The script demonstrates:

• Correct rejection of duplicate ClientHello with Un-
expected Message alert

• Proper rejection of unsolicited client certificates
• A simplified visualization of the obtained

state machine should further be available at
experiment_outputs/E1/alphabet-13/
OpenSSL3.4.0_short.pdf

• A simplified visualization for a smaller al-
phabet, resulting in a less extensive state
machine, should further be available at
experiment_outputs/E1/alphabet-1/
OpenSSL3.4.0_short.pdf

• A log file providing stats for the extraction of
the individual alphabets should be available at
experiment_outputs/E1/app.log. For the indi-
vidual alphabets, a high cache efficiency of >97%
should be indicated.

(E2): Illustrating issue detection based on OpenSSL 1.0.1j
[10 human-minutes + 10 compute-minutes]: this experi-
ment demonstrates the automated detection of state ma-
chine vulnerabilities in an older OpenSSL version. The
issue is similar to the NetScaler real-world finding pre-
sented in the paper. Note that the execution is scoped to
one alphabet to reduce the execution time.



Preparation: Ensure Docker images are built via
setup.sh. If the 10-minute computational step was not
run during setup, E2.sh will execute it.
Execution: Run ./experiments/E2.sh from the
repository directory. The script will:

• Check if the state machine already exists from setup
• If not, run the 10-minute learning process (limited

to the first alphabet as this suffices to illustrate the
issue)

• Execute the automated analysis
• Demonstrate the issue by tracing duplicate

ClientHellos
• Show complete invalid handshake paths involving

duplicate ClientHellos
Results: The analysis identifies multiple issues:

• Invalid message paths with duplicate ClientHellos
that complete the handshake

• Illegal inputs (like CCS after handshake) that do not
trigger an error

• The script demonstrates how duplicate ClientHellos
incorrectly receive ServerHello responses twice

• A simplified visualization of the obtained
state machine should further be available at
experiment_outputs/E2/alphabet-1/
OpenSSL1.0.1j_short.pdf

(E3): Inspecting key findings from our dataset [15 human-
minutes]: this experiment analyzes representative state
machines from our dataset to demonstrate selected issues
we observed.
Preparation: Ensure Docker images are built and
dataset is extracted via setup.sh.
Execution: Run ./experiments/E3.sh from the
repository directory. The script analyzes three state ma-
chines:

• completed-59.xml - A NetScaler state machine
which accepts duplicated ClientHello messages

• completed-331.xml - A state machine accepting
unsolicited certificates

• completed-1280.xml - A state machine exhibit-
ing deviating behavior for multiple padding oracle
test vectors

Results: The script demonstrates:
• NetScaler accepting duplicate ClientHellos (similar

to E2)
• Improper certificate handling allowing unrequested

certificates to be sent in the handshake
• Padding oracle vulnerabilities with behavioral dif-

ferences for different padding types
• Each analysis includes traces showing the specific

message paths leading to issues

A.5 Notes on Reusability
Scope In both E1 and E2, we configure the Docker con-
tainer to run our state learner tool to perform 20,000 random
word queries per state when conducting the equivalence tests.
In our study, we used 42,000 random queries. To conduct
the experiment with the same extent of equivalence tests,
the -queries parameter of the respective shellscript can be
adjusted. For E2, we further limit the execution to the first
alphabet. Deleting the -alphabetLimit parameter from the
shellscript will result in a full execution. Note that extracting
the full state machine of OpenSSL 1.0.1j takes significantly
longer than extracting the state machine of OpenSSL 3.4.0.

Inspecting the Dataset To inspect more of the state ma-
chines we collected, please refer to any of the Docker run
commands for the CLI tool given in experiments/E3.sh
and adapt the file path (-f) to point to another state machine
XML file.

Tools For applying our state learner to other targets, we
recommend to use the flags from E1 or E2 as guidelines as
these parameters reflect how we used the tool for our study.
Additionally, both the state learner and the state machine
analysis tool provide a brief help functionality to guide users
through their features.

• State Learner: Access help by running the tool with the
-h or -help flag. This displays all available command-
line options, including configuration parameters for al-
phabet selection, learning algorithms, and output for-
mats.

• State Machine Analysis Tool: Once in the interactive
shell, type help to see all available commands. For de-
tailed information about a specific command, use help
<command>. Additionally, launching the tool with -help
provides command-line usage options.

Building Without Docker Building the project outside of
the Docker image should only require Maven and a Java
Development Kit. Please note that Java 11 is required to run
the resulting Jars as some dependencies used in our project
are not compatible with newer Java versions.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


