
USENIX Security ’25 Artifact Appendix: Shadows in Cipher Spaces:
Exploiting Tweak Repetition in Hardware Memory Encryption

Wei Peng*, Yinshuai Li*, Yinqian Zhang†

Research Institute of Trustworthy Autonomous Systems
Department of Computer Science and Engineering

Southern University of Science and Technology

A Artifact Appendix

A.1 Abstract

Our paper introduces the CIPHERSHADOW attack, which ex-
ploits the reuse of the same tweak value in the 64-byte mem-
ory blocks of the Hygon CSV v1, v2, v3 memory encryp-
tion mechanisms. This reuse leads to successful decryption
through 16-byte ciphertext replacement, and the characteris-
tic that identical 16-byte ciphertexts have the same plaintext.
CIPHERSHADOW can tamper with the program’s control flow
and data flow by substituting encrypted memory after inter-
rupting the VM at an attacker-chosen point in the program
execution. This artifact includes two attacking scenarios: a
malicious SSH login implemented to CSV v1 and v2, and
a one-shot ciphertext leakage of the MNIST dataset imple-
mented to CSV v1, v2, and v3.

A.2 Description & Requirements

This artifact comprises four main experiments: 1) Gadget
scanning; 2) Proof of Concept (PoC) of SSH-malicious login;
3) Page location; 4. PoC of one-shot ciphertext leakage. The
experiments must be conducted on Hygon processors. For the
SSH-malicious login and page location, the processor must be
capable of enabling VMs with CSV v1 or v2. For the one-shot
ciphertext leakage, the processor needs to be able to enable
VMs with CSV v1, v2, or v3.

A.2.1 Security, privacy, and ethical concerns

Observing the ciphertext does not pose a security issue, but
replacing 16-byte aligned ciphertext blocks may cause the
VM to crash if the content of the program replacement is not
correctly chosen or the timing of the replacement is incorrect.

*These authors contributed equally to this work.
†Corresponding Author: yinqianz@acm.org

A.2.2 How to Access

This artifact are publicly available on Zenodo: https://
doi.org/10.5281/zenodo.15614377 and GitHub: https:
//github.com/pw0rld/CSV-CipherShadow.git.

A.2.3 Hardware dependencies

This attack must be executed on a Hygon-series CPU with at
least CSV v1 support. Our experiments were conducted on
the following processors:

• Hygon C86 5285 CPU with CSV v1 support.

• Hygon C86 7390 CPU with CSV v2 support.

A.2.4 Software Dependencies

Our experiments rely on the following software that supports
enabling CSV VMs:

• QEMU (csv-devel-6.2.0-v1)*

• Linux Kernel (OLK-6.6)†

• OVMF (csv-stable202202-v1)‡

A.3 Set-up
After installing and building the compatible versions of
QEMU, the kernel, and OVMF, you can use the following
commands to start CSV.

git clone github.com:pw0rld/CSV-CipherShadow
cd CSV-CipherShadow
./make_vm_img.sh
sudo ./start -qemu.sh

*https://gitee.com/anolis/hygon-qemu/tree/csv-devel-6.2.
0-v1/

†https://gitee.com/openeuler/kernel/tree/OLK-6.6/
‡https://gitee.com/anolis/hygon-edk2/tree/

csv-stable202202-v1/

https://doi.org/10.5281/zenodo.15614377
https://doi.org/10.5281/zenodo.15614377
https://github.com/pw0rld/CSV-CipherShadow.git
https://github.com/pw0rld/CSV-CipherShadow.git
https://gitee.com/anolis/hygon-qemu/tree/csv-devel-6.2.0-v1/
https://gitee.com/anolis/hygon-qemu/tree/csv-devel-6.2.0-v1/
https://gitee.com/openeuler/kernel/tree/OLK-6.6/
https://gitee.com/anolis/hygon-edk2/tree/csv-stable202202-v1/
https://gitee.com/anolis/hygon-edk2/tree/csv-stable202202-v1/


A.3.1 Basic Test

We provide a simple memory observation experiment to
demonstrate the existence of this vulnerability. If the vul-
nerability exists, you should observe repeated 16-byte aligned
ciphertext patterns within 64-byte blocks for identical plain-
texts.

cd Observation_memory && make
insmod ob.ko
dmesg

A.4 Evaluation workflow
The experiments we have prepared include application fin-
gerprinting, SSH malicious login, and a one-shot ciphertext
leakage attack.

A.4.1 Major Claims

(C1): We implemented a gadget scanner (Section 5) to find
gadgets in target programs that can manipulate program
control flow and data flow, by replacing aligned cipher-
texts of 16 bytes within 64 bytes.

(C2): We demonstrate that a program fingerprint can be con-
structed based on the pattern of whether the 16-byte
ciphertexts within a 64-byte block are identical, which
helps in locating program pages (Section 6.1).

(C3): We demonstrate that CIPHERSHADOW hijacks pro-
gram control flow and tampers with function return val-
ues by replacing 16-byte ciphertexts, enabling malicious
login to SSH services (Section 6.2).

(C4): We demonstrate that in the CSV memory encryption
mechanism, the characteristic of 16-byte aligned identi-
cal ciphertexts within 64 bytes having the same plaintext
can lead to one-shot ciphertext leakage attacks (Section
6.3).

A.4.2 Experiments

(E1): Gadget Scanning:
How to: Select the sensitive functions in the application
you want to attack and search for gadgets to help tamper
with the control flow or data flow, thereby achieving the
purpose of tampering with the return value.
Preparation: Download the necessary Python depen-
dencies.

pip install -r requirements.txt

Execution: Execute the gadget scanner script, the first
parameter is the target program’s binary file, the second
parameter specifies the function for finding gadgets, and
the third parameter configures specific values of registers
and memory at the function entry.

python gadget_search.py <Target Binary >
<Target Functions > <Initial State
Value >

Results: You can see the results of the gadget scan in
the terminal, including the number of illegal and poten-
tial control flow and data flow gadgets, along with the
corresponding assembly content of each gadget.

(E2): SSH-Malicious Login [10 minutes]:
How to: The attacker is able to log into the TEE VM
using an incorrect password through the SSH service.
In this experiment, we demonstrate that the encryption
mechanism of CSV allows for replacing 16 bytes within
a 64-byte block and successfully decrypting, and by uti-
lizing the ciphertext pattern to locate pages, we hijack
the return value of sys_auth_passwd function by sub-
stituting the code for failed login attempts with that of
successful ones.
Preparation: First, the attacker needs to preprocess the
SSH binary to identify the characteristic features of the
page containing the sys_auth_passwd function. Then,
using page faults, the attacker obtains suspicious VM
pages. After filtering a specific set of VM pages, the
attacker extracts their memory features and compares
them with the preprocessed features. A match indicates
that the page is the target page. If multiple matches occur,
further methods are required for precise identification,
such as leveraging the register page features discussed
later.
Notice: If the machine freezes when starting CSV, you
can run the reload.sh script in the repository. This script
will reload the kernel and remove previous cached con-
figurations.
Execution: The tool automatically targets the currently
running CSV VM, repeatedly attempts SSH logins until
the SSH login interface is identified, and modifies the
login logic to validate successful authentication.

sudo python3 analysis_csv.py

Results: The attacker is able to log into the server using
an incorrect password.

(E3): Page location [10 minutes]:
How to: In this experiment, we use a benchmark con-
sisting of a set of assembly instructions with special
patterns. We extract their characteristics using single-
stepping. This allows us to observe the execution of
instructions and locate the target page.
Preparation: First, the attacker needs to compute the
register characteristics of a specific assembly code seg-
ment within the target page. This process requires man-
ual analysis using GDB. In this experiment, we use a
14-bit value to record the change patterns of different
registers. If a register changes compared to the previous
state, the corresponding bit is set to 1. In this experiment,



the register feature we use is: [0x1, 0x80, 0x40, 0x10,
0x8, 0x4, 0x4, 0x8, 0x10, 0x40, 0x80, 0x1].
Execution: This command triggers a timer interrupt and
scans a designated Guest Physical Address (GPA) to
extract its physical page characteristics. The provided
parameters include the physical address and the timer
interval.

./poc single_step_page 0x10af9e000 10
dmesg -c > dmesg.log

Noticed: Please note that due to differences in machine
APICs, testers may need to identify a suitable APIC
Timer value on their own machines. On our machines,
the effective range is between 7 and 10.
Results: The attacker can observe the register behavior
of the page through its GPA, and leverage this feature
to locate the page by matching it with the preprocessed
binary.

(E4): One-Shot Ciphertext Leakage [5 minutes]:
How to: For CSV v3, read and write protection has been
implemented on encrypted memory, preventing attackers
from performing ciphertext replacement attacks. How-
ever, we can infer and recover the training set for the
MLP-Classifier model by utilizing the characteristic that
identical 16-byte aligned plaintexts have identical cipher-
texts within a 64-byte block through ciphertext patterns.
Preparation: Since we do not have physical access to
the CSV v3 machine, we simulated the one-shot mem-
ory collection process in CSV v2. After the training set
was loaded into memory, we completed the dump of
the encrypted memory. The file leak.bin contains the
collected training set memory data.
Execution: Run the leakage attack script, which in-
cludes three steps: recovering images, training the model,
and validating the success rate of recovering images.

python leakage -attack.py

Results: The restored images will be in the of_dir
folder, and the terminal will output the success rate of
the image recovery.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to Access
	Hardware dependencies
	Software Dependencies

	Set-up
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


