ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Save what must be saved:
Secure context switching with Sailor

Neelu S. Kalani *

EPFL & IBM Research — Zurich

Guerney D. H. Hunt

IBM T. J. Watson Research Center

A Artifact Appendix

A.1 Abstract

We introduce a tool called Sailor that automatically identifies
ISA-state that must be swapped across context switches to
prevent information leaks or computational integrity breaches.
Sailor parses traces generated from an existing tool, Isla, a
symbolic execution engine for ISA specifications written in
the domain-specific language, Sail. We demonstrate Sailor
for the RISC-V architecture. In this work, we extend Isla
to automatically generate traces for multiple instructions, in
the same format as provided by the RISC-V specification
manuals. Based on the identified ISA-state, we automatically
generate tests to check if the context switch implementations
on existing systems swaps the state correctly or not.

The associated artifacts include:

1. The patch to Isla for generating traces for all instructions
in a general-purpose RISC-V processor (rv64gc).

2. The python scripts to compute the ISA-state relevant for
context switching. This includes parsing of the Isla traces
(ISA-Inspector) and the classifier algorithm (Analyzer),
as shown in Figure 3 of the paper.

3. The automatic test generator (also shown in Figure 3)
that generates tests to provide experimental evaluation
of existing systems.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Executing the artifacts does not impose any risk for the evalu-
ators, since our work is more focused on the defensive side of
security using ISA specifications in Sail and the Isla symbolic
execution engine to generate insights useful for implement-
ing secure context switching. We do have tests that help us
uncover bugs in existing systems. However, these tests don’t

*Majority of the work was done while the author was at IBM Research
— Zurich.

Thomas Bourgeat
EPFL

Wojciech Ozga
IBM Research — Zurich

perform attacks, rather serve as proof-of-concept for infor-
mation leakage. Further, these tests require testing on the
StarFive VisionFive2 board (we provided access to it via ssh)
and not on the evaluators machine.

There are no data privacy or other ethical concerns, since
we do not handle private or sensitive data in our work.

A.2.2 How to access

The artifact is accessible on GitHub for the purpose of func-
tionality and reproducability checks. (GitHub link: https://
github.com/neeluk7/sailor_artifact.git). The arti-
fact is also hosted on Zenodo: https://doi.org/10.5281/
zenodo.15613680.

A.2.3 Hardware dependencies

We ran our experiments on a Linux (v6.8.0) Ubuntu 24.04.2
LTS server equipped with Intel Xeon Gold 5520+, with 112
cores and 504 GB RAM. Running our experiments on any
machine with fewer resources should not affect reproduca-
bility for all experiments except for the Isla trace generation
process. The trace generation takes 20 hours on our server,
however, it might take more time depending on the machine
being evaluated on. We provide pre-generated traces which
require about 3 GB of storage and tests to generate full traces
and also a subset of traces.

A.2.4 Software dependencies

We have tested the experiments mainly on Linux (reproducing
them on a MacOS should be possible, but we recommend the
evaluators to use a Linux system if available). The software
dependencies are shown in Table 1 and the Makefile has all
the required commands to install these.

A.2.5 Benchmarks

None.


https://github.com/neeluk7/sailor_artifact.git
https://github.com/neeluk7/sailor_artifact.git
https://doi.org/10.5281/zenodo.15613680
https://doi.org/10.5281/zenodo.15613680

Software Version
RISC-V Toolchain | 13.3.0
Opam 2.1.5

Rustc 1.86.0
Python3 3.12.3

Table 1: Software dependencies.

A.3 Set-up
A.3.1 Installation

The instructions and commands to install the dependencies
and setup the artifact are included in the README.md and the
Makefile. This includes setting up the software dependencies
mentioned in Table | as well as Sail and Isla. Evaluators can
follow the steps below. (In case of difficulties,

1. Run make setup-dependencies to install all depen-
dencies.

2. Run make setup-sail and make setup-isla. These
commands will apply the patches to Sail and Isla and
build Isla.

3. Download the Isla traces into the isla_traces_dir
directory inside the root directory of the artifact from
Google drive (https://drive.google.com/drive/
folders/1FI_wnHABUfF juzru2wMaTpUQf9I1Qw3r?
usp=share_link); the traces consume about 3 GB of
disk space.

A.3.2 Basic Test

For the basic test, once the installation is complete, Isla’s
functionality and the parsing of Isla’s traces using the python
scripts in Sailor must be checked. More specifically, the fol-
lowing two tests must pass.

1. Islaruns correctly after applying the patch with our modi-
fications. For this, runmake isla-traces-test.Itwill
produce test traces in the isla_traces_test directory and
use the diff command to compare against expected
output in expected_results/isla_test_traces.

2. Qur script parses the Isla traces correctly. Run make
isla-parse-test, which will generate the output in
the parse_test_output.txt and compare it against the ex-
pected result using diff.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our framework Sailor, leverages existing tool, Isla,
and the machine-readable ISA-specification in Sail, to
identify ISA-state that must be swapped during context
switching. The framework produces results as shown in

Tables 1, 2, and 3 in the paper. We will regenerate these
results using experiment (E1).

(C2): Based on the identified results, we perform a security
analysis of three existing systems: Keystone, Komodo,
and StarFive VF2 (as shown in Table 4 in the paper). We
will corroborate these findings using experiment (E2).

A4.2 Experiments

(E1): [Produce security-sensitive ISA-state using Sailor] [30

human-minutes + 1 compute-hour]:
Preparation: The Isla traces must be downloaded and
present in the isla_traces_dir, before performing this
experiment.
Execution: Run the make run-sailor command
which will parse all the Isla traces and produce the ISA
isnights corresponding to Tables 1, 2, and 3 in the pa-
per as well as run the analyzer (classifier algorithm) to
generate insights on which state to swap during context
switches. This command will also use the diff utility
to compare against expected results and automatically
generate the tests.
Results: CSVs corresponding to Tables 1, 2, and 3:

1. CSVs/csr_(read/write)_access.csv

2. CSVs/csr_footprint_per_instruction_(machine/ su-

pervisor/user).csv

3. CSVs/instruction _access_per_mode.csv
Further, the security-sensitive insights from the analyzer
will be generated in switch-from-U-to-U.csv. The
tests will be generated in the test-generator/tests direc-
tory.

(E2): [Security analysis] [30 human-minutes + 30 compute-

minutes]:
Preparation: Part of this step requires the StarFive Vi-
sionFive 2 board to run the automatically generated tests.
The time to run the actual tests is less than 5 minutes.
We provided remote access to our board via ssh for the
evaluation.
Execution: The aim of this step is to verify the
results reported in Table 4 of the paper. Keystone
and Komodo are both included in the repository as
submodules for helping with the simple check required
to confirm the finding using grep. Run the grep -nril
"senvcfg" . commands from within the keystone and
the serval/monitors/komodo directories. The expected
output of the command is that no match will be found,
since these monitor implementations do not correctly
configure/swap the senvcfg CSR. Next, the tests
automatically generated using experiment (E1) should
be run on the StarFive VisionFive 2 board. There are
screenshots of the scripts run and expected output in
the drive link https://drive.google.com/drive/
folders/1EDGzDCXFdQ6UgCNybJUyhg6bmKnJuuGY ?
usp=share_link. As done in the scripts, it is important


https://drive.google.com/drive/folders/1FI_wnHABUfFjuzru2wMaTpUQf9I1Qw3r?usp=share_link
https://drive.google.com/drive/folders/1FI_wnHABUfFjuzru2wMaTpUQf9I1Qw3r?usp=share_link
https://drive.google.com/drive/folders/1FI_wnHABUfFjuzru2wMaTpUQf9I1Qw3r?usp=share_link
https://drive.google.com/drive/folders/1EDGzDCXFdQ6UgCNybJUyhg6bmKnJuuGY?usp=share_link
https://drive.google.com/drive/folders/1EDGzDCXFdQ6UgCNybJUyhg6bmKnJuuGY?usp=share_link
https://drive.google.com/drive/folders/1EDGzDCXFdQ6UgCNybJUyhg6bmKnJuuGY?usp=share_link

to use taskset to run the tests on the same core to observe
the findings.
Results: Once the execution is done and produces ex-

pected output, the findings reported in Table 4 are veri-
fied.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


