
USENIX Security ’25 Artifact Appendix: LLMxCPG: Context-Aware
Vulnerability Detection Through Code Property Graph-Guided Large

Language Models

Ahmed Lekssays1*, Hamza Mouhcine1*, Khang Tran2, Ting Yu3, Issa Khalil1
1Qatar Computing Research Institute, 2New Jersey Institute of Technology,

3Mohamed bin Zayed University of Artificial Intelligence
{alekssays, hmouhcine, ikhalil}@hbku.edu.qa,

kt36@njit.edu, ting.yu@mbzuai.ac.ae
* Joint first authors with equal contribution

A Artifact Appendix

A.1 Abstract
LLMxCPG is a novel framework that integrates Code Prop-
erty Graphs (CPG) with Large Language Models (LLM) for
robust vulnerability detection. Our CPG-based slice construc-
tion technique significantly reduces code size, ranging from
67.84% to 90.93%, while preserving vulnerability-relevant
context. This approach enables a more concise and accurate
representation of code snippets, facilitating the analysis of
larger code segments, including entire projects. Empirical
evaluation demonstrates LLMxCPG’s effectiveness on veri-
fied datasets, achieving 15-40% improvements in F1-score
over state-of-the-art baselines. Furthermore, LLMxCPG main-
tains high performance across both function-level and multi-
function codebases and exhibits robust detection efficacy un-
der various syntactic code modifications.

A.2 Description & Requirements
This section lists all the information necessary to recreate the
experimental setup used to run the artifact. Where it applies,
the minimal hardware and software requirements to run the
artifact are specified.

A.2.1 Security, privacy, and ethical concerns

Our vulnerability detection research adheres to responsible
disclosure protocols and established security research guide-
lines. We carefully balance the benefits of identifying security
weaknesses against potential risks, and all discovered vulner-
abilities are reported through appropriate channels, allowing
sufficient time for patches before public disclosure. We main-
tain strict confidentiality throughout the research process to
ensure our methods do not compromise system integrity or
user privacy.

A.2.2 How to access

The source code, fine-tuned models, and testing datasets used
in this study are publicly available to the community to foster
research in this field. They can be accessed at:

• GitHub: https://github.com/qcri/1lmxcpg

• Zenodo: https://zenodo.org/records/15614095

A.2.3 Hardware dependencies

The fine-tuning of the models was performed on an NVIDIA
A100-80GB GPU. While the fine-tuned model for query gen-
eration (LLMxCPG-Q) was limited to a 32K token context
due to computational constraints, the base model supports
a 128K token context, with versions supporting up to 1M
tokens being available if substantial computational resources
are provided. For optimal performance in evaluation, access
to a GPU, ideally an NVIDIA A100 with at least 80GB of
memory, is recommended.

A.2.4 Software dependencies

The artifact requires the following software components:

• Operating System: Ubuntu 22.04

• Joern: An open-source static analysis tool. A cluster of
Joern servers deployed using Docker containers is used
for parallel processing.

• LLaMA-Factory framework

• vLLM inference library

• Python 3.x and associated packages listed in the ‘require-
ments.txt‘ file within the repository.

https://github.com/qcri/1lmxcpg
https://zenodo.org/records/15614095


A.2.5 Benchmarks

The evaluation utilized several datasets:

• Training Datasets: (both for query generation and
vulnerability detection)

– FormAI-v2
– PrimeVul

• Generalizability/Test Datasets:

– SVEN
– Repos Vul
– 2025 Post-Knowledge-Cutoff (PKCO-25) CVEs

dataset (compiled from CVEs published in 2025)

A.3 Set-up

This section includes all the installation and configuration
steps required to prepare the environment for the evaluation
of the artifact.

A.3.1 Installation

To install and set up the artifact, follow these steps:

1. Clone the LLMxCPG repository from GitHub: git
clone https://github.com/qcri/1lmxcpg.git

2. Navigate to the cloned directory: cd 1lmxcpg

3. Install the required Python dependencies. A ‘require-
ments.txt‘ file is provided in ‘requirements.txt‘: pip
install -r requirements.txt

4. Set up Joern: The paper mentions deploying Joern
servers using Docker containers for parallel processing.
Follow the official Joern documentation for installation
and setup within a Docker environment.

A.3.2 Basic Test

To run a simple functionality test of the LLMxCPG system
(specifically the detection model), you can execute the ‘de-
tect_inference.py‘ script with a sample code snippet.

1. Run the inference script:
python inference/detect_inference.py {dataset}
where dataset is one of the following: primevul, formai,
sven, reposvul, and pkco.

2. Expected output: The model should classify the code as
either "VULNERABLE" or "SAFE". For a vulnerable
input, the expected output is "VULNERABLE". Then,
the Accuracy, Precision, Recall, and F1-Scores are cal-
culated.

A.4 Evaluation workflow

This section includes all the operational steps and experi-
ments which must be performed to evaluate if your artifact is
functional and to validate your paper’s key results and claims.

A.4.1 Major Claims

(C1): LLMxCPG achieves high performance on function-
level vulnerability detection across diverse datasets. This
is proven by the experiments (E1) and (E2) described in
Section 4.3.2 "Function-level Vulnerability Detection"
and Section 4.4.1 "Function-level Vulnerability Detec-
tion" (Generalizability subsection) , whose results are
illustrated/reported in Table 3 and Table 5. Specifically,
LLMxCPG achieves up to 0.8146 Accuracy and 0.8075
F1-score on the FormAI dataset , and a remarkable 20%
improvement in accuracy over competing approaches on
the SVEN dataset.

(C2): LLMxCPG demonstrates robust generalization capa-
bilities on project-level codebases and novel vulnera-
bilities that emerged after its knowledge cutoff. This is
proven by the experiment (E3) described in Section 4.4.2
"Project-level Vulnerability Detection" , whose results
are illustrated/reported in Table 7. LLMxCPG achieved
an F1-score of 0.610 and Accuracy of 0.634 on the Repos
Vul dataset, and an F1-score of 0.617 and Accuracy of
0.600 on the 2025 Post-Knowledge-Cutoff (PKCO-25)
dataset.

A.4.2 Experiments

(E1): Function-level Vulnerability Detection Performance
on Trained Datasets [30 human-minutes + 1 compute-
hour]:
How to: This experiment evaluates LLMxCPG’s perfor-
mance on function-level code snippets using the FormAI
and PrimeVul datasets, which were part of the training
data.
Preparation: Ensure the LLMxCPG environment is set
up and the fine-tuned LLMxCPG-D model (based on
QwQ-32B-Preview) is loaded. Use the test splits of the
FormAI and PrimeVul datasets.
Execution: Run the LLMxCPG inference pipeline
on the test sets of FormAI and PrimeVul by running
python inference/detect_inference.py primevul
and python inference/detect_inference.py formai.
Results: The expected outcome is high performance in
vulnerability detection, as shown in Table 3. For FormAI,
expected Accuracy is 0.8146 and F1-score is 0.8075. For
PrimeVul, expected Accuracy is 0.7250 and F1-score is
0.6206.

(E2): Generalizability to Unseen Function-level Datasets
[30 human-minutes + 1 compute-hour]:



How to: This experiment assesses the generalizability
of LLMxCPG by evaluating its performance on the
SVEN dataset, which was not part of the training data.
Preparation: Ensure the LLMxCPG environment is set
up and the fine-tuned LLMxCPG-D model is loaded. Use
the SVEN dataset for testing.
Execution: Run the LLMxCPG infer-
ence pipeline on the SVEN dataset:
python inference/detect_inference.py sven
Results: The expected outcome is that LLMxCPG sig-
nificantly outperforms the baselines, achieving a sub-
stantial improvement in accuracy. As shown in Table 5,
LLMxCPG is expected to achieve an Accuracy of 0.6020
and an F1-score of 0.7048.

(E3): Project-level Vulnerability Detection and Generaliza-
tion to Post-Knowledge-Cutoff CVEs [45 human-minutes
+ 1.5 compute-hour]:
How to: This experiment evaluates LLMxCPG’s per-
formance on complex, project-level code snippets from
the Repos Vul dataset and its generalization to newly
published CVEs (PKCO-25 dataset).
Preparation: Ensure the LLMxCPG environment is set
up and the fine-tuned LLMxCPG-D model is loaded.
Use the sampled Repos Vul dataset and the 2025 Post-
Knowledge-Cutoff (PKCO-25) CVEs dataset for testing.
Execution: Run the LLMxCPG inference pipeline
on both the Repos Vul and PKCO-25 datasets with
python inference/detect_inference.py reposvul
and python inference/detect_inference.py pkco.
Results: The expected outcomes are promising results
despite the complexity of the datasets. As shown in Ta-
ble 7, for Repos Vul, expected Accuracy is 0.634 and
F1-score is 0.610. For PKCO-25, expected Accuracy is
0.600 and F1-score is 0.617.

A.5 Notes on Reusability

All source code and datasets used in this study are open-
source, supporting reproducibility, transparency, and further
research in the domain of software security. The artifact pro-
vides a valuable framework for future research by enabling
the analysis of large code segments through its CPG-based
slice construction technique. Additionally, LLMxCPG’s abil-
ity to precisely identify and isolate security-critical changes
between vulnerable and patched versions makes it particularly
valuable for understanding vulnerability fixes and generating
high-quality training data for vulnerability detection models.
This functionality can be leveraged by other researchers to
compile large, high-quality datasets for training vulnerability
detection models in the future.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


