
USENIX Security ’25 Artifact Appendix: “I have no idea how to make it
safer”: Studying Security and Privacy Mindsets of Browser Extension

Developers

Shubham Agarwal, Rafael Mrowczynski, Maria Hellenthal, Ben Stock

CISPA Helmholtz Center for Information Security, Saarbruecken, Germany
{shubham.agarwal, mrowczynski, hellenthal, stock}@cispa.de

A Artifact Appendix

A.1 Abstract

We studied the security and privacy mindset of browser ex-
tension developers by conducting a semi-structured interview
with them. As presented in the main paper, we interviewed
21 extension developers and observed that they only have
surface knowledge of S&P issues and threats associated with
extensions. To worsen the situation, they reported having little
to no idea on how to best these threats in most cases.

We open-source all the artifacts associated with the de-
sign of the interviews – the interview guide, the code book,
the email invites used for recruitment, and the pre-screening
survey questionnaire used to select candidates. Notably, our
semi-structured interview also required the participants to
work on a set of coding tasks to assess their working knowl-
edge of security and privacy practices. Hence, we also open
source the prototypical Web application and the set of browser
extensions used for individual coding tasks in their functional
state for transparency and reuse in the future.

A.2 Description & Requirements

The functional components of our artifact include a prototypi-
cal e-commerce application and the set of browser extensions
that we created to facilitate the coding tasks. The Web ap-
plication is based on the Django framework and includes a
docker-compose.yml file that allows quick and easy deploy-
ment on any host machine, with docker installed on it.

Further, each of the browser extensions contains logic to
perform interactions with the DOM of the visited Web page
(e.g., create buttons, inject iframes, etc.) based on the corre-
sponding coding tasks. Thus, to verify their functionality, it is
necessary to load individual extensions into the browser, and
hence, a headful evaluation environment is required. However,
the browser extensions are platform-agnostic and are tested
to work on the following browsers: Google Chrome, Brave,
Arc, Opera, Microsoft Edge and Mozilla Firefox.

A.2.1 Security, privacy, and ethical concerns

There are no security and privacy concerns associated with
our artifacts. The prototype Web application and the browser
extensions do not collect any data or interact with any of our
remote servers whatsoever. However, we note that the browser
extensions, corresponding to Coding Task 2 and Coding Task
3, send network requests with session cookies, if available, to
amazon.de and connect.facebook.com, respectively, nec-
essary for the functionality of the coding tasks. Thus, we
advise our users and evaluators to load these extensions in a
clean/incognito environment to avoid any privacy issues.

A.2.2 How to access

The artifact can be accessed and downloaded from the follow-
ing link: https://doi.org/10.5281/zenodo.15550089.

A.2.3 Hardware dependencies

There are no hardware dependencies for our artifact other
than the fact that the functionality of the browser extensions
can only be observed in a headful environment (i.e., PC or
laptop with display and not a remote server).

A.2.4 Software dependencies

The operating system environment should allow running
(docker) container environment. Alternatively, as we detail
later, one can run the Web applications without docker by
installing Django and other necessary Python packages di-
rectly on their host machine. Further, as mentioned before, the
functional evaluation of browser extensions requires them to
be loaded into the browser. Thus, at least one of the following
browsers must be installed on the machine: Google Chrome,
Brave, Arc, Opera, Microsoft Edge and Mozilla Firefox.

A.2.5 Benchmarks

None.

amazon.de
connect.facebook.com
https://doi.org/10.5281/zenodo.15550089


A.3 Set-up
We now outline the steps to set up the evaluation environment
for the Web application and the browser extensions. As men-
tioned above, the tests only require the Web application to
be running (either through the docker container or natively)
and a browser that supports extensions. Once the artifact is
downloaded, please unzip the following folders for evaluation:
dev_study.zip and extension_coding_tasks.zip.

A.3.1 Installation

We assume our users/evaluators already have one of the re-
quired browsers installed on their machine. If not, we will al-
low them to install the browser they choose for the tests. Next,
to enable loading unpublished browser extensions locally,
please follow the following steps for Chromium browsers:

1. Navigate to chrome://extensions.
2. Toggle the Developer Mode button on the top-right

corner of the page to switch it on. This allows browser
extensions to be loaded from a local machine.

Firefox does not require any manual configurations to load
extensions locally.

To install docker, please follow the instructions on the offi-
cial documentation based on the host environment, accessi-
ble at https://docs.docker.com/engine/install/. Af-
ter installing the docker, please ensure that the docker daemon
is already running in the background, as follows:
$ docker --version
[Docker Alternative]: If the host environment does

not allow running docker containers, one can run the Web
application natively through Python. For this, they need to
install the related project dependencies first, as follows:
$ pwd
./extension-developer-study

$ cd dev_study/apps/app1/
$ pip install -r requirements.txt

A.3.2 Basic Test

To run the Web application on your machine:
• First, navigate to the application directory
$ cd dev_study

• Next, run the docker container.
$ docker compose up --build -d

• Alternatively, if you plan to run the Web application
natively, execute the following:
$ cd apps/app1/
$ python manage.py runserver 9000

Now, the Web applications should be running and accessi-
ble at: http://127.0.0.1:9000. Default login credentials:
username: foo, password: bar.

Note: While running the application in a docker-less fash-
ion, please ensure that the python version is configured cor-

rectly to >=3.10 for compatibility with dependencies. The de-
fault port number specified within the docker-compose.yml
files is 9000. So, please ensure the port is available for use or
set the desired port number in the corresponding files.

Next, to load any of the browser extensions into the browser:
For Chromium browsers:

1. Navigate to chrome://extensions.
2. Then, click Load unpacked and select one

of the extension directories (e.g., exten-
sion_coding_tasks/primary/task1).

For Mozilla Firefox:
1. Navigate to about:debugging#/runtime/

this-firefox.
2. Then, click Load Temporary Add-on... and select

the manifest of one of the extensions (e.g., exten-
sion_coding_tasks/primary/task2/manifest.json).

The extension should be loaded without errors/warnings.
The functional test environment is now set up.

A.4 Evaluation workflow
A.4.1 Major Claims

The following are the major claims that need to be evaluated
for the functionality of our artifact:
(C1): The prototypical Web application is functional and

contains necessary pages required for the coding tasks.
(C2): The browser extensions corresponding to each coding

task is functional and injects necessary DOM elements
into the e-commerce application above.

Note: The browser extensions are only functional to the
point that it injects DOM elements into the appropriate page
(in E1), and includes partial logic to perform operations (in
E2 & E3). The study participants implemented the rest of the
S&P-related logic, as listed in Table 1 of the main paper.

A.4.2 Experiments

(E1): [Coding Task 1] [<5 human-minutes]:
• Load the task1 extension from
extension_coding_task/primary/task1/
into the browser.

• After running the Web application locally, navi-
gate to http://127.0.0.1:9000 and login with
default credentials.

• Navigate to http://127.0.0.1:9000/
products or click on the Product tab on
top. Then, click on the Order Now button for any
of the listed items to navigate to the Order page.

• The task1 extension should inject two additional
buttons – Save Address for Later and Autofill Ad-
dress Data, before the Continue to Payment button
(as shown in Figure 1). Disabling the extension
will remove the two injected buttons from the UI.

(E2): [Coding Task 2] [<5 human-minutes]:

chrome://extensions
https://docs.docker.com/engine/install/
http://127.0.0.1:9000
chrome://extensions
about:debugging#/runtime/this-firefox
about:debugging#/runtime/this-firefox
http://127.0.0.1:9000
http://127.0.0.1:9000/products
http://127.0.0.1:9000/products


Figure 1: Expected view of the order page when task1 ex-
tension is loaded.

• Load the task2 extension from
extension_coding_task/primary/task2/
into the browser.

• Navigate to http://127.0.0.1:9000/
products or click on the Product tab.

• The browser extension injects an additional but-
ton – Check on Amazon below the Order Now for
each listed product, as shown in Figure 2. This but-
ton and the associated logic are supposed to allow
checking the price of the listed product on Amazon.

• However, when clicking on the injected button, the
iframe does not work since the interview partici-
pants are supposed to fix the issue. Disabling the
corresponding extension will remove the button
from the UI.

Figure 2: Expected view of the product page when task2
extension is loaded.

(E3): [Optional]: [Coding Task 3] [<5 human-minutes]:
• Load the task3 extension from

extension_coding_task/primary/task3/
into the browser.

• Navigate to http://127.0.0.1:9000/
products or click on the Product tab.

• Here, since the application sends the CSP header,
which blocks all third-party scripts from being ex-
ecuted. Thus, the page UI has no visual cues to
verify the extension’s functionality.

• However, one can open the Developer Tools
and verify the functionality by looking
for the corresponding error in the console
– inject.js:10 Refused to load the script
’https://connect.facebook.net/en_US/sdk.js’
because it violates the following Content Secu-
rity Policy directive: "script-src ’self’". Note
that ’script-src-elem’ was not explicitly set, so

’script-src’ is used as a fallback.
• Alternatively, one can also inspect the outgoing net-

work logs to https://connect.facebook.net/
en_US/sdk.js.

A.5 Notes on Reusability
The Web Application & Browser Extensions: The prototyp-
ical e-commerce application could very well be extended with
more functionalities and pages without actually capturing any
data based on the requirements and research focus. Similarly,
the open-sourced extension boilerplate could be used as is or
modified accordingly to interact with the e-commerce appli-
cation developed here. However, we strictly advise against
using our extension source code for real-world extension de-
velopment or publishing, as the manifest of these extensions
includes redundant host and API permissions.

Interview Guide: Our interview guide elaborates on the
structure, topical areas, and related questions we asked our
participants in our semi-structured interviews. Future studies
may build upon this guide for similar studies on browser
extensions, or, in general that may include coding tasks.

Email Invites: The content of the email invites that we sent
to our participants only partially disclosed our background.
That is, we only identified ourselves as Computer Scientists
and not Security/Privacy experts to eliminate any potential
bias during recruitment or in later phases of our study, how-
ever, without compromising the ethical boundaries of recruit-
ment. Researchers may reuse our email content after appro-
priate changes to recruit developers under similar constraints.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

http://127.0.0.1:9000/products
http://127.0.0.1:9000/products
http://127.0.0.1:9000/products
http://127.0.0.1:9000/products
https://connect.facebook.net/en_US/sdk.js
https://connect.facebook.net/en_US/sdk.js
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


