
USENIX Security ’25 Artifact Appendix: <Topic-FlipRAG:
Topic-Orientated Adversarial Opinion Manipulation Attacks to

Retrieval-Augmented Generation Models>

Yuyang Gong1*, Zhuo Chen1, Jiawei Liu1†, Miaokun Chen1,
Fengchang Yu1, Wei Lu1, XiaoFeng Wang2, Xiaozhong Liu3

1Wuhan University, 2Nanyang Technological University, 3Worcester Polytechnic Institute

A Artifact Appendix

A.1 Abstract

This artifact contains the complete implementation of the
Topic-FlipRAG attack, along with all components necessary
to reproduce the results presented in our USENIX Security
paper. The repository includes: (1) the full attack codebase for
Topic-FlipRAG and baseline methods, (2) evaluation scripts
for computing opinion shift and retrieval consistency metrics,
(3) ethically filtered synthetic datasets generated by GPT-
4o, (4) comprehensive documentation for setup and usage,
and (5) pre-generated poisoned document examples for quick
evaluation. These resources enable reproducibility.

A.2 Description & Requirements

The artifact is fully executable via Google Colab and does not
require local installation. All experimental code is configured
with default parameters that exactly match those used in the
main experiments of our USENIX Security paper. No changes
are needed to reproduce the core results.

The repository includes pre-generated adversarial docu-
ments to facilitate rapid evaluation. Reviewers may directly
run the evaluation notebooks to verify the effects of Topic-
FlipRAG without executing the full document poisoning
pipeline, thereby reducing time and API usage.

A.2.1 Security, privacy, and ethical concerns

Describe any risk for evaluators while executing your artifact
to their machines security, data privacy or others ethical
concerns. This is particularly important if destructive steps
are taken or security mechanisms are disabled during the
execution.

*Email: 2498002636gyy@gmail.com
†Corresponding author. Email: laujames2017@whu.edu.cn

A.2.2 How to access

All artifact code, data, and documentation are publicly avail-
able at the following locations:

• GitHub repository (for AEC evaluation and it-
erative updates): https://github.com/LauJames/
Topic-FlipRAG

• Zenodo archive (stable version for the camera-ready
submission): https://doi.org/10.5281/zenodo.
15523434

The GitHub repository is actively maintained during the
Artifact Evaluation period and may receive minor updates
in response to reviewer feedback. The Zenodo snapshot will
serve as the final archived version for the camera-ready arti-
fact.

A.2.3 Hardware dependencies

The artifact runs entirely on Google Colab without the need
for any specialized local hardware or remote infrastructure.

• GPU: NVIDIA T4 (for generating poisoned documents
via Topic-FlipRAG), A100 (recommended for evaluating
RAG system response)

All components execute within Colab with GPU acceler-
ation enabled; no SSH access or external hardware setup is
required.

A.2.4 Software dependencies

The artifact runs in the default Google Colab environment
using Python 3.9+. All required dependencies are open-source
and automatically installed via pip at the beginning of each
notebook.

https://github.com/LauJames/Topic-FlipRAG
https://github.com/LauJames/Topic-FlipRAG
https://doi.org/10.5281/zenodo.15523434
https://doi.org/10.5281/zenodo.15523434


Benchmarks

The artifact includes the dataset used for the opinion manip-
ulation experiments. These consist of the PROCON dataset
and GPT-4o–generated queries designed to simulate realistic
manipulation tasks. All queries have been ethically filtered to
ensure responsible usage and safe evaluation.

In addition, we provide pre-generated poisoned document
examples used in our Topic-FlipRAG attack pipeline. These
are included to help AEC reviewers quickly evaluate manipu-
lation outcomes without running the full document poisoning
process, thereby reducing computational cost and API usage.

A.3 Set-up
A.3.1 Installation

No manual installation is required. All dependencies are in-
stalled automatically when executing the code blocks in the
provided Colab notebooks.

A.3.2 Basic Test

To perform a quick test, please follow the instructions in the
GitHub repository’s README.md. Replace the relevant path
variables with the provided example data files. Default pa-
rameters have been pre-configured in the Colab notebooks, so
reviewers can directly run the cells without any modification.

A.4 Evaluation workflow
The evaluation workflow is provided in
RAG_pipeline.ipynb, which includes code for as-
sessing both ranking manipulation and opinion manipulation.
Reviewers can directly execute this notebook in Google
Colab to reproduce the main experimental results described
in the paper.

A.4.1 Major Claims

(C1): Topic-FlipRAG, under black-box conditions, effectively
boosts the rankings of target documents across queries
within the retriever module of RAG. This is demonstrated
by experiment (E1,E2,E3) described in Section 6.1, with
results shown in Table 2.

(C2): Topic-FlipRAG significantly affects the answers gen-
erated by the target RAG systems. This is supported by
experiment (E1,E2,E3) described in Section 6.2, with
results shown in Table 3 and Table 11 (Appendix).

A.4.2 Experiments

(E1): [Knowledge-Guided attack] [5 human-minutes + 45
compute-minutes per topic + OpenAI API + NVIDIA
T4]: This stage corresponds to generating poisoned doc-
uments (doc_know) aligned with the target opinions, as

described in Section 4.2. These are used in subsequent
trigger optimization and evaluation steps.
How to: We recommend testing on a single topic to re-
duce API costs and runtime. The generated doc_know
will serve as input to Stage 2. Even if this step is skipped,
subsequent evaluation can still be performed using our
pre-generated example data.
Preparation: Open Stage 1 Notebook in Google Colab.
Ensure GPU (T4) is enabled. Install dependencies via
the first code cell. Place PROCON_data.json from
the GitHub repo in the required data path. An OpenAI
API key is also needed.
Execution: Run the notebook as instructed. Select a sin-
gle topic and execute the document generation blocks.
Results: The notebook will output a doc_know JSON
file for the selected topic, which can be saved to Colab
or Google Drive. This file is used as input to Stage 2
(E2).

(E2): [Adversarial Trigger Generation] [5 human-minutes +
75 compute-minutes per topic (5 passages per topic, 42
topics total) + NVIDIA T4]: This stage corresponds to
generating adversarial triggers based on the doc_know
files produced in Stage 1 (E1), as described in Section 4.3
of the paper. The output is a poisoned document file
(doc_adv) used in final RAG evaluation.
How to: Follow the GitHub README.md to run the
corresponding Colab notebook for Stage 2. Even if E1
is not executed, we provide example doc_know files that
can be used to run E2 directly.
Preparation: Open Stage 2 Notebook in Colab. En-
able GPU (T4), install dependencies, and ensure
PROCON_data.json is placed in the correct path.
For quick testing, update the input path to use the
provided example doc_know file, as explained in the
README.
Execution: Run all cells in the notebook. The script will
optimize adversarial triggers for five passages per topic
based on the input doc_know.
Results: The output is a doc_adv file containing adver-
sarially modified documents, stored locally or in Drive.
This file will be used as input in Stage 3 (E3) to evaluate
attack effectiveness.

(E3): [RAG Pipeline and Evaluation] [5 human-minutes + 3
compute-minutes per topic + A100 GPU + OpenAI API]:
This stage involves injecting adversarial documents into
the RAG system and evaluating downstream impacts, as
described in Section 6. This step validates Claims C1
and C2 through end-to-end experiments.
How to: Follow the instructions in the GitHub
README.md to run the RAG_pipeline.ipynb
notebook.
Preparation: Launch the notebook in Google Co-
lab and ensure GPU (A100) is enabled. Install
dependencies by running the setup cells. Place



PROCON_data.json in the correct path. To simplify
evaluation, we provide pre-generated poisoned passages
(doc_adv) for 9 topics in the “Society” domain with tar-
get stance “CON.” Update the input path as described
in the README.
Execution: Run all cells in the notebook. This step
loads the poisoned documents, runs the retrieval-
augmented generation process, and computes evaluation
metrics.
Results: The expected metrics, based on our paper re-
sults using the provided poisoned examples (Society do-
main, target stance: CON), are: RASR = 51.9, Top3-v =
25.57, and ASV = 0.55 (ranging approximately from 0.5
to 0.6). These results were obtained using the Qwen2.5
LLM with a Contriever retriever setup, and demonstrate
the manipulation effectiveness of Topic-FlipRAG in a
full RAG pipeline.
If you wish to evaluate other combinations of LLMs and
retrievers, please modify the corresponding configura-
tion parameters in the notebook. Refer to the experimen-
tal comparisons reported in the main paper for baseline
expectations across different model setups.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


