
USENIX Security ’25 Artifact Appendix: Sometimes Simpler is Better: A
Comprehensive Analysis of State-of-the-Art Provenance-Based Intrusion

Detection Systems

Tristan Bilot123†, Baoxiang Jiang4†, Zefeng Li5, Nour El Madhoun2,
Khaldoun Al Agha1, Anis Zouaoui3, Thomas Pasquier5

1Université Paris-Saclay, 2LISITE, Isep,3Iriguard,
4Xi’an Jiaotong University, 5University of British Columbia

A Artifact Appendix

A.1 Abstract

In this study [3], we developed a unified framework that con-
solidates eight state-of-the-art PIDSs [4–10, 12] into a single
codebase. This framework supports extensive customization,
allowing users to integrate components from different systems
for complex analyses and ablation studies. Where possible,
the original code was optimized with GPU-accelerated oper-
ations and refactored according to best coding practices to
improve maintainability. Each system is configured through
its own YAML file, specifying system-specific parameters. To
reduce redundancy, the framework employs a pipeline system
that automatically reuses previously computed components
and leverages existing results when available. The framework
is primarily implemented in PyTorch and PyTorch Geometric
and comprises 82 Python files totaling 14,811 lines of code.

We intend this project as a living artifact and invite the
community to submit new systems.

A.2 Description & Requirements

All training and evaluation were conducted on a server run-
ning Ubuntu 22.04, equipped with a 3.2GHz 16-core AMD
EPYC 7343 CPU, 1024 GB of memory, and an NVIDIA
GA100 GPU with 80GB of memory.

A.2.1 Security, privacy, and ethical concerns

To the best of our knowledge, this work does not raise any
ethical issues. All experiments have been performed on pub-
licly available datasets that have been acquired in an ethical
manner and do not contain any sensitive information. No secu-
rity mechanisms are disabled, nor are any destructive actions
performed during the evaluation.

†Work partially completed while at the University of British Columbia.

A.2.2 How to access

Permanent link: The source code is available on Zenodo:
https://zenodo.org/records/15603122.
Archived Git repository: The original code correspond-
ing to the paper is available at https://github.com/
ubc-provenance/PIDSMaker/tree/velox.
Maintained version of the framework: The updated and
maintained version of the framework is available at https:
//github.com/ubc-provenance/PIDSMaker.
Documentation: A detailed documentation is available at
https://ubc-provenance.github.io/PIDSMaker/.

A.2.3 Hardware dependencies

Access to a relatively high-end GPU is recommended to speed
up experiment completion.

A.2.4 Software dependencies

The experiments were conducted in the following environ-
ment.
OS. 5.19.0-46-generic #47∼22.04.1-Ubuntu
Docker. 28.1.1, build 4eba377
CUDA. 12.2
NVIDIA driver. 535.230.02

The following steps apply only if Docker is not already in-
stalled and working properly with CUDA.

1. Install Docker following the official instructions and
configure it to run without sudo.

2. Install dependencies for CUDA support with Docker:

Add the NVIDIA package repository
curl -fsSL https://nvidia.github.io/

↪→ libnvidia-container/gpgkey | sudo
↪→ gpg --dearmor -o /usr/share/keyrings
↪→ /nvidia-container-toolkit-keyring.
↪→ gpg

https://zenodo.org/records/15603122
https://github.com/ubc-provenance/PIDSMaker/tree/velox
https://github.com/ubc-provenance/PIDSMaker/tree/velox
https://github.com/ubc-provenance/PIDSMaker
https://github.com/ubc-provenance/PIDSMaker
https://ubc-provenance.github.io/PIDSMaker/
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

curl -s -L https://nvidia.github.io/
↪→ libnvidia-container/stable/deb/
↪→ nvidia-container-toolkit.list | \

sed 's#deb https://#deb [signed-by=/usr/
↪→ share/keyrings/nvidia-container-
↪→ toolkit-keyring.gpg] https://#g' |
↪→ \

sudo tee /etc/apt/sources.list.d/nvidia-
↪→ container-toolkit.list

Update and install
sudo apt-get update
sudo apt-get install -y nvidia-container-

↪→ toolkit

Restart services
sudo systemctl restart docker
sudo nvidia-ctk runtime configure --runtime

↪→ =docker
sudo systemctl restart docker

A.2.5 Benchmarks

We use the DARPA E3 [1], E5 [2], and OpTC [11] datasets.

A.3 Set Up
Note: If encountering issues during the installation or repro-
ducibility of experiments, please refer to the guidelines in the
archived Git repository and consider opening an issue.

A.3.1 Installation

1. Clone the Repo

git clone https://github.com/ubc-provenance/
↪→ PIDSMaker.git -b velox velox

cd velox

2. Download Datasets
The DARPA Transparent Computing (TC) and Opera-

tionally Transparent Cyber (OpTC) datasets are large and
require substantial computational resources to process. We
provide pre-processed versions of these datasets, stored in
a PostgreSQL database, with database dumps available for
download.
Datasets Size. The sizes of each database dump are as follows:
raw refers to the size of the dump after downloading and
uncompressing the archive, while loaded indicates the size
once loaded into the PostgreSQL table.
Downloadable Archives. We provide three files:

1. optc_and_cadets_theia_clearscope_e3.tar, con-
taining all OpTC datasets, CADETS_E3, THEIA_E3,
and CLEARSCOPE_E3.

Dataset Raw (GB) Loaded (GB)

CLEARSCOPE_E3 0.6 4.8
CADETS_E3 1.4 10.1
THEIA_E3 1.1 12
CLEARSCOPE_E5 6.2 49
CADETS_E5 36 276
THEIA_E5 5.8 36
OPTC_H051 1.7 7.7
OPTC_H_501 1.5 6.7
OPTC_H201 2.0 9.1

Table 1: Raw and loaded sizes of DARPA TC and OpTC
dataset dumps.

2. theia_clearscope_e5.tar, containing THEIA_E5
and CLEARSCOPE_E5.

3. cadets_e5.dump is the dump for CADETS_E5 (very
large).

Steps.

1. Download the archive(s) into a new data folder from
Google Drive. On the command line, use curl with an
authorization token (see Stack Overflow for details):

• Visit the OAuth 2.0 Playground at develop-
ers.google.com/oauthplayground.

• In the Select the Scope box, paste
https://www.googleapis.com/auth/drive.readonly.

• Click Authorize APIs, then Exchange
authorization code for tokens.

• Copy the Access token.

• Run the following in a terminal:

Note. Each curl call may download only part of the
file before pausing. When the loading bar stops, press
Ctrl+C and rerun the command until the download com-
pletes.

mkdir data && cd data

OpTC and E3 Datasets
curl -H "Authorization: Bearer

↪→ ACCESS_TOKEN" -C - https://www.
↪→ googleapis.com/drive/v3/files/11
↪→ YVPAuWfeEqC_zV8KD0gNrnEPbHf2Y4M?alt=
↪→ media -o
↪→ optc_and_cadets_theia_clearscope_e3.
↪→ tar

THEIA and CLEARSCOPE E5 Datasets

https://drive.google.com/drive/folders/1cTSrl_CTxg_rTC_ENddaqAxJXOku8O6y
https://stackoverflow.com/a/67550427/10183259
https://developers.google.com/oauthplayground/
https://developers.google.com/oauthplayground/

curl -H "Authorization: Bearer
↪→ ACCESS_TOKEN" -C - https://www.
↪→ googleapis.com/drive/v3/files/1
↪→ DfolzEa3PVz_6fGZUNEUm0sBP42LB7_1?alt
↪→ =media -o theia_clearscope_e5.tar

CADETS E5 Dataset
curl -H "Authorization: Bearer

↪→ ACCESS_TOKEN" -C - https://www.
↪→ googleapis.com/drive/v3/files/1
↪→ Xiq7w0Ofz4jZG2PVFuNqi_i0fm28kRcT?alt
↪→ =media -o cadets_e5.dump

2. Uncompress the archives (requires minimal additional
space):

tar -xvf
↪→ optc_and_cadets_theia_clearscope_e3.
↪→ tar

tar -xvf theia_clearscope_e5.tar

3. Load Databases
We create two containers: one for the PostgreSQL database

and another to execute the experiments.

1. Set your paths in .env:

cp .env.local .env

In .env, set INPUT_DIR to the data folder path. Option-
ally, set ARTIFACTS_DIR to the folder for generated files
(multiple GBs). Then run:

source .env

2. Build and start the database container:

docker compose -p postgres -f compose-
↪→ postgres.yml up -d --build

Note: Update environment variables using source
.env after modifying .env before running docker
compose.

3. In a terminal, access a shell in the container:

docker compose -p postgres exec postgres
↪→ bash

4. If you have sufficient storage (135 GB), load all
databases:

./scripts/load_dumps.sh

For limited storage, load databases individually:

pg_restore -U postgres -h localhost -p 5432
↪→ -d DATASET /data/DATASET.dump

5. Once loaded, exit the container:

exit

4. Get into the PIDSMaker Container
The pids container is used for development and to run

experiments.

1. For VSCode users, use the Dev Containers extension. In-
stall the extension, then press Ctrl+Shift+P and select
Dev Containers: Open Folder in Container.

2. Alternatively, load the container manually:

docker compose -f compose-pidsmaker.yml up
↪→ -d --build

docker compose exec pids bash

The Python environment and framework are installed in this
container. Now download the weights necessary to reproduce
the Velox results.

pip install gdown
cd weights

Neural net encoder weights
gdown https://drive.google.com/drive/folders/18

↪→ vc5JuMwUY2TmrlONG3xyPdh9NfBXyAD --folder

Word2vec weights
gdown https://drive.google.com/drive/folders/1w

↪→ -QoUYsnAKVVMLnLfxQ2qS1W5--1kUaD --folder

A.3.2 Basic Test

Once you have a shell in the pids container, execute the
following commands:

cd scripts
./run_local.sh velox THEIA_E3 --tuned

A.4 Evaluation workflow
A.4.1 Major Claims

The paper is experiment-heavy. It represents a high com-
putational cost (a total of 453 days of computation on our
hardware). Consequently, we do not expect you to reproduce
all results presented in the paper. Instead we focus on the two
following major claims:

https://code.visualstudio.com/docs/devcontainers/create-dev-container

(C1): A simpler ML architecture can achieve state-of-the-art
performance on a number of common benchmark. This
is demonstrated in Table 4, 5, and 6 via the ADP Best
metric, and can be reproduced by the experiment E1.

(C2): We notice a high instability in the results. Training the
system from scratch will lead to significantly different
results across runs. This is discussed in §4, SC5. This is
demonstrated in Table 4, 5, and 6 via the σ̃ADP metric,
and can be reproduced by the experiment E2.

A.4.2 Experiments

Due to high computation cost, we focus on reproducing results
from velox, orthrus and nodlink shown to have reasonable
computational cost (see §5.1, Figure 13).
(E1): [5 human-minutes + few hours of compute + ∼ 300

GB disk]:
How to: We provide a single script (run_local.sh) that
reproduces the final experimental results (Tables 4, 5, 6)
presented in the paper. Based on claim C1, we only want
to reproduce the best ADP metrics, which indicate the
best-case detection capability of a system.
Preparation: Follow steps described in §A.3.
Execution: To reproduce best ADP scores, we provide
the pre-computed weights, as training can take up to
multiple days:

./run_local.sh velox DATASET --from_weights
↪→ --tuned

• Replace DATASET with one of the follow-
ing: THEIA_E3 CADETS_E3, CLEARSCOPE_E3,
CLEARSCOPE_E5, CADETS_E5, THEIA_E5,
optc_h201, optc_h501, or optc_h051.

Results: Compare the adp_score metric with the asso-
ciated value in Tables 4, 5, 6. Note that the ADP scores
might be slightly different due to important instability,
as demonstrated in experiment E2.

(E2): [5 human-minutes + several days of compute + ∼ 1TB
disk]:
How to: Based on claim C2, each run spans for five it-
erations and the Mean, Min and Best metrics are printed,
along with the standard deviation. For C2, we only focus
on the standard deviation to measure the instability of
systems. This is measured by the σ̃ADP metric.
Preparation: Follow steps described in §A.3.
Execution: The goal is to reach high σ̃ADP scores, as in
Tables 4, 5, 6:

./run_local.sh {system} DATASET --
↪→ experiment=run_n_times --tuned

• Replace {system} with one of the follow-
ing: velox, orthrus, and nodlink (additionally
thretrace, kairos, rcaid, and flash are also
available).

Example with velox:

./run_local.sh velox THEIA_E3 --experiment=
↪→ run_n_times --tuned

./run_local.sh velox CADETS_E3 --experiment
↪→ =run_n_times --tuned

./run_local.sh velox CLEARSCOPE_E3 --
↪→ experiment=run_n_times --tuned

Results: Compare the adp_score_std_rel metric
with σ̃ADP in Tables 4, 5, 6. Here we show that all sys-
tems are subject to instability. This means the measured
performance of a system differs significantly from one
run to another. Consequently, exact reproduction of the
original results is very unlikely. This is not a bug and
is indeed the expected behavior (see §4, SC5).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[1] Transparent Computing Engagement 3 Data Release,
Accessed 10th August 2025. https://github.
com/darpa-i2o/Transparent-Computing/blob/
master/README-E3.md.

[2] Transparent Computing Engagement 5 Data Release,
Accessed 10th August 2025. https://github.com/
darpa-i2o/Transparent-Computing.

[3] Tristan Bilot, Baoxiang Jiang, Zefeng Li, Nour El Mad-
houn, Khaldoun Al Agha, Anis Zouaoui, and Thomas
Pasquier. Sometimes Simpler is Better: A Compre-
hensive Analysis of State-of-the-Art Provenance-Based
Intrusion Detection Systems. In Security Symposium
(USENIX Sec’25). USENIX, 2025.

[4] Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, De-
gang Sun, Thomas Pasquier, and Xueyuan Han. Kairos:
Practical Intrusion Detection and Investigation using
Whole-system Provenance. In Symposium on Security
and Privacy (S&P’24). IEEE, 2023.

[5] Akul Goyal, Gang Wang, and Adam Bates. R-CAID:
Embedding Root Cause Analysis within Provenance-
based Intrusion Detection. In Symposium on Security
and Privacy (S&P’24). IEEE, 2024.

[6] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li,
Junghwan John Rhee, James W. Mickens, Margo I.
Seltzer, and Haifeng Chen. SIGL: Securing Software

https://secartifacts.github.io/usenixsec2025/
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing

Installations Through Deep Graph Learning. In Security
Symposium (USENIX Sec’21). USENIX, 2021.

[7] Zian Jia, Yun Xiong, Yuhong Nan, Yao Zhang, Jinjing
Zhao, and Mi Wen. MAGIC: Detecting Advanced Per-
sistent Threats via Masked Graph Representation Learn-
ing. In Security Symposium (USENIX Sec’24). USENIX,
2024.

[8] Baoxiang Jiang, Tristan Bilot, Nour El Madhoun, Khal-
doun Al Agha, Anis Zouaoui, Shahrear Iqbal, Xueyuan
Han, and Thomas Pasquier. ORTHRUS: Achieving High
Quality of Attribution in Provenance-based Intrusion
Detection Systems. In Security Symposium (USENIX
Sec’25). USENIX, 2025.

[9] Shaofei Li, Feng Dong, Xusheng Xiao, Haoyu Wang,
Fei Shao, Jiedong Chen, Yao Guo, Xiangqun Chen, and
Ding Li. NODLINK: An Online System for Fine-
Grained APT Attack Detection and Investigation. In
Network and Distributed System Security Symposium
(NDSS’24). The Internet Society, 2024.

[10] Mati Ur Rehman, Hadi Ahmadi, and Wajih Ul Hassan.
Flash: A Comprehensive Approach to Intrusion Detec-
tion via Provenance Graph Representation Learning. In
Symposium on Security and Privacy (S&P’24). IEEE,
2024.

[11] Mike van Opstal and William Arbaugh. Operationally
Transparent Cyber (OpTC) Data Release, 2019. https:
//github.com/FiveDirections/OpTC-data.

[12] Su Wang, Zhiliang Wang, Tao Zhou, Hongbin Sun, Xia
Yin, Dongqi Han, Han Zhang, Xingang Shi, and Jiahai
Yang. Threatrace: Detecting and tracing host-based
threats in node level through provenance graph learn-
ing. IEEE Transactions on Information Forensics and
Security, 17:3972–3987, 2021.

https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set Up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

