
USENIX Security ’25 Artifact Appendix: My ZIP isn’t your ZIP:
Identifying and Exploiting Semantic Gaps Between ZIP Parsers

Yufan You1, Jianjun Chen1,2,B, Qi Wang1, and Haixin Duan1,2

1Tsinghua University
2Zhongguancun Laboratory

A Artifact Appendix

A.1 Abstract

Our artifact consists of three major components, along with
several utility scripts to reproduce the results in the paper:

1. The ZIPDIFF differential fuzzer designed to discover
inconsistencies between multiple ZIP parsers. It has two
options to reproduce the ablation study in the paper.

2. Docker images for the 50 tested ZIP parsers. We provide
both prebuilt image files and source files to build them.

3. Construction code for ambiguous ZIP files. Based on our
findings, we classify the ZIP parsing ambiguities into 14
types and constructed sample ZIP files for each variant
of them. We use the construction code to demonstrate
how to implement the ambiguities described in the paper.
We also use them to measure the types of inconsistencies
between each of the 1225 pairs of parsers.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

All ZIP files in this artifact are only used to test inconsis-
tencies between ZIP parsers. They do not contain harmful
payloads such as malware, and the parsers are isolated in
Docker containers, so it is safe to run the experiments.

A.2.2 How to access

Our artifact is available on Zenodo1 and GitHub2. On Zenodo,
the source code is provided in ZipDiff.tar.gz, and the
prebuilt Docker images are provided in the *.tar.bz2 files.

BCorresponding author: jianjun@tsinghua.edu.cn
1https://doi.org/10.5281/zenodo.15526863
2https://github.com/ouuan/ZipDiff/tree/zenodo-v7

A.2.3 Hardware dependencies

We recommend running the experiment on a machine with at
least 128GB of RAM and 300GB of disk space. More CPU
cores will speed up the experiment. The authors used Intel
Xeon Gold 6330 with 112 logical cores and 944GB of RAM.

The memory requirement comes from two sources: First,
it runs 50 parsers in parallel that may consume around 60GB
of RAM at peak. Second, the unzip outputs can sometimes
be very large, and the file I/O operations will be slow if it
exceeds the cache size. The memory usage also depends on
the number of CPU cores, as the parsers will run in parallel
based on the number of available CPUs.

The disk space requirement is also mainly caused by large
unzip outputs. The outputs are compressed after each iteration,
so the final results will be smaller than the peak usage during
a single iteration. The disk space requirement will be much
lower if the file system supports transparent compression.

The fuzzer provides a batch size option that can be lowered
to reduce the resource requirements. However, the Docker
overhead will be significant if the batch size is too small.

A.2.4 Software dependencies

The experiments require a Linux system with Rust, Docker
and Docker Compose. Python 3 with numpy and matplotlib
is required for generating the tables and figures. The zip
command will be helpful in the basic test.

The authors used Ubuntu 23.10 with Linux 6.5.0-44, Rust
1.86.0, Docker 27.1.1 with Docker Compose 2.33.1, and
Python 3.13.3 with numpy 2.3.0 and matplotlib 3.10.3.

A.2.5 Benchmarks

The tested ZIP parsers are provided as Docker images. The
prebuilt image files are available on Zenodo.

A.3 Set-up
A.3.1 Installation

Follow these steps to set up the dependencies and the artifact:

mailto:jianjun@tsinghua.edu.cn
https://doi.org/10.5281/zenodo.15526863
https://github.com/ouuan/ZipDiff/tree/zenodo-v7

1. Install Rust. Follow the instructions at https://www.
rust-lang.org/tools/install to install Rust using
rustup. Either install the latest stable version (by default)
or 1.86.0 used by the authors.

2. Install Docker and Docker Compose. Follow the
instructions at https://docs.docker.com/engine/
install and https://docs.docker.com/compose/
install/linux.

3. Fetch source code. Either download ZipDiff.tar.gz
from Zenodo and extract the archive by tar xf
ZipDiff.tar.gz, or clone it from GitHub by git
clone https://github.com/ouuan/ZipDiff.

4. Compile Rust code. Run cargo build --release in
the zip-diff directory of the source code.

5. Build or load Docker images. Build Docker images
of the ZIP parsers by running tools/prepare.sh,
cd parsers, and sudo docker compose build.
Alternatively, load the prebuilt image files: for i
in *.tar.bz2; do docker load -i "$i"; done.
Most parser versions are fixed in the source files, but a
few may change, so it is recommended to load prebuilt
images to ensure using the same versions as the paper.

A.3.2 Basic Test

Test parsers. Create a ZIP: zip -0 a.zip README.md. Run
parsers on it: tools/run-parsers.sh a.zip. The parsers
will print some logs and exit. The outputs of the parsers will
be saved in subdirectories of evaluation/results/a.zip.
All parsers should extract README.md successfully.

Minimal fuzzing. Run sudo target/release/fuzz -b
10 -s 120 in the zip-diff directory. This will run fuzzing
for two minutes with only ten samples per batch. The fuzzer
will print logs for each iteration. The log text should con-
tain ok: 50, indicating that all parsers are working fine.
The results will be available at evaluation/stats.json,
evaluation/samples and evaluation/results.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ZIPDIFF can discover inconsistencies between the ma-
jority of the 50 tested ZIP parsers. The chosen system
design outperforms the two other setups in the ablation
study. This is proven by the experiment (E1) described
in Section 5.1 and 5.3, with results plotted in Fig. 4.

(C2): We identified 14 types of ZIP parsing ambiguities as
described in Section 5.2. We constructed sample files
corresponding to these ambiguities. All 14 types can
cause inconsistencies between some pairs of parsers, and
1221 out of a total of 1225 pairs of parsers are affected

by at least one type of ambiguity. This is proven by the
experiment (E2) and the number of inconsistency types
between each pair of parsers is recorded in Table 4.

A.4.2 Experiments

(E1): Fuzzing and ablation study [5 human-minutes + 15
computer-days + 100GB final / 500GB runtime disk]
Preparation: We default to run five 24-hour fuzzing
sessions for each of the three setups with a batch size
of 500. For quick verification, the duration of each ses-
sion (STOP_SECONDS in tools/ablation-study.sh)
and the number of sessions (TIMES) can be reduced. To
adapt for low memory and disk space, the batch size
(BATCH_SIZE) can be reduced.
Execution: Run sudo tools/ablation-study.sh.
It requires root privilege because a normal user might
not have the permission to read the unzip outputs.
Results: The stats are saved in evaluation/stats.
The samples and outputs are saved in the subdi-
rectories of evaluation/sessions. Run python3
tools/fuzz-stats.py evaluation/stats/* to plot
the graph (Fig. 4) at inconsistent-pair-cdf.pdf.

(E2): Ambiguous ZIP construction and inconsistency type
counting [1 human-minute + 40 computer-minutes]
Execution: Inside the zip-diff directory, first run
target/release/construction, and then run sudo
target/release/count.
Results: The inconsistency type details are saved at
constructions/inconsistency-types.json. Run
python3 tools/inconsistency-table.py to gener-
ate the LaTeX parser inconsistency table (Table 4).

A.5 Notes on Reusability
More ZIP parsers can be added for testing. Refer to
01-infozip as an example to configure the Docker image.

ZIPDIFF may also be adapted to test other archive formats,
if the ZIP-level mutations are replaced with other format-
specific ones.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://docs.docker.com/engine/install
https://docs.docker.com/engine/install
https://docs.docker.com/compose/install/linux
https://docs.docker.com/compose/install/linux
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

