ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
“STEK Sharing is Not Caring: Bypassing TLS Authentication in Web Servers using
Session Tickets”

Sven Hebrok
Paderborn University

Maximilian Radoy
Paderborn University

Tim Leonhard Storm
Paderborn University

Felix Matthias Cramer
Paderborn University

Juraj Somorovsky
Paderborn University

August 6, 2025

A Artifact Appendix

A.1 Abstract

Our artifact consists of three separate software submissions
mapping to the three major parts of our paper:

Artifact I A tool for offline scans evaluating the impact of
different SNI and Host header combinations on server
contents when using session resumption.

Artifact I A tool for offline scans evaluating the impact of
different SNI and Host header combinations on TLS
client authentication when using session resumption.

Artifact III A tool(chain) for online scans evaluating the im-
pact on served content when using session tickets issued
by related, but different hosts.

Atrtifact I and Artifact II can be used to fully reproduce our
results mostly offline. Both only require internet access to
download docker containers. Artifact III can be used to re-
produce the online, but due to servers changing (partially
in response to our disclosure), the results will likely differ.
We provide a slimmed down version running against local
Docker containers instead, which demonstrates the workflow
and functionality of our software.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Artifacts I and I download and run Docker images from the
official registry. All containers use the official images from
the respective web server maintainers. We also create our own
Docker containers based on the official Docker-in-Docker
images to run our artifacts. These containers are run with the
--privileged flag.

A.2.2 How to access

The artifacts are made permanently accessible on zenodo,
available at

https://doi.org/10.5281/zenodo.15474656

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Because all three artifacts use radically different setups, we
provide Docker images for Artifact I and Artifact II. Extended
instructions are contained in the respective README.

Artifact I OpenSSL, Docker
Artifact I OpenSSL, Docker

Artifact III Python > 3.12, Pip, Docker, Golang 1.20,
cmake, jqo, libjudy, libgmp, libpcap, byacc, flex, libjson, li-
bunistring, curl, git

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

The instructions shown here use the dockerized versions
where possible, but instructions for running on baremetal
are available in the README.

Artifact I Build the Docker container:

cd server-tests
docker build -t server-tests:latest .

Artifact I Build the Docker container:

cd Auth_Dotsche
docker build -t authdotsche:latest . -f
<~ Dockerfile

Artifact IIl We strongly recommend using a VM, because we
assume sudo for a lot of operations. Build all required
tools (including our respective forks):

git clone --recurse-submodules ...
sudo ./build_dependencies.sh

A.3.2 Basic Test

Artifact I Spawn a pre-configured nginx Docker container
using

docker run --rm --name server-tests -it
«— —-privileged server-tests:latest deploy
< nginx one-server

curl commands for different SNIs are printed, that
should result in different dummy websites being received.
Execute these via

docker exec server-tests <curl cmd>

Artifact I Omitted because the complete test run is fully
automated and should only take minutes on modern
mid-range hardware. No reasonable subset of setups or
checks would simplify the setup or shorten the runtime
for a considerable amount.

Artifact II Check that the different binaries are built cor-
rectly:

./zdns/zdns --help

./zmap/src/zmap --help
./zmapv6/src/zmap --help
./zgrab2_t1s13/cmd/zgrab2/zgrab2 --help

Also check whether the dummy servers and DNS resolu-
tion are working:

./setup.sh
dig @127.0.0.1 -p 8053 a.com

This should yield some local Docker IP.

A.4 Evaluation workflow

Because of the differences between our artifacts, we split this
section into three parts.

A.4.1 Major Claims Artifact I

(C1): We claim that Table | presented in Section 4 is accurate
for the versions listed in appendix A.

A.4.2 Experiments Artifact I

(E1): Generating software results [2 human-minutes + 15
compute-minutes [
Preparation: Install the software according to ap-
pendix A.3.1.
Execution: Run to execute all testcases against all sup-
ported software configurations.

docker run --privileged -it -v ./out:/out
— server-tests:latest evaluate --outdir
— out

Optionally, you can restrict the output to a single soft-
ware or testcase with -——software and --case respec-
tively. A full list of available options can be found
in testcases/configuration.yml By default results
are written in the working directory, but ——outdir can
be used to change the directory (Note that this refers to
the directory inside the container for dockerized usage).
Results: The file results. {json, csv, jsonl} lists how each
of the different softwares and their configurations react
to different SNI and Host header, based on the virtual
host issuing the session ticket and the receiving virtual
host. This is the raw data for Table 1. Note that the table
contains only the one-server case.
You can either verify the results against Table | by hand
or refer to (E2).

(E2): Veritying the table [5 human-minutes + 1 compute-
minute]:
Preparation: Run (E1) in full configuration (without
--software or --case).
Execution: Run

docker run --privileged -it -v ./out:/out
— server-tests:latest postprocess
< out/results.jsonl

and verify that the final two lines read "Validated table
assumptions for ...".

Results: The postprocess script has different assertions
about the results based on each software, e.g. checking
that real behavior matches documented behavior or that
different configurations behave the same. The output
will list all these assertions, color-coded on whether they
are as documented or whether they diverge.

Then the data is specifically checked
against the behavior presented in Table I.
The corresponding code can be found in

evaluate/functionality/postprocess.py:394f
and 450f in the _check_table_assumptions...
functions.

Within each function, assertions are grouped by columns
in the results table then rows. For example, the assertions
in lines 396/397 and 454-460 check the results for the
SNI=I, H=I case.

Running this successfully explicitly confirms claim (CI).

A.4.3 Major Claims Artifact IT

(C2): We claim that Table 2 presented in Section 4 is accurate
for the versions listed in appendix A.

A.4.4 Experiments Artifact I1

(E3): Verifying the Table [10 human-minutes + 10 compute-
minutes + 2GB disk]
Preparation: Install the software according to ap-
pendix A.3.1.
Execution: Start the container. This will automatically
run all tests against all web server configurations.

docker run --rm -v ./out:/code/out
— ——privileged --name authdotsche
— authdotsche:latest

Alternatively, the provided file run. sh fully automates
both steps, including the preparation.
Results: The experiment outputs its results both as con-
sole output and also as an HTML table. The resulting
HTML table contains the full list of test cases and test
results, which corresponds to the results presented in
Table 2. The table will be saved in the mounted directory
./out/.
You can verify the results by hand: Each column A ->
BC describes the test case, where a ticket obtained with
SNI and Host header A is then used with SNI B and
Host C'. The first column A->AA (Ticket from Host A
to SNI=A,Host=A) maps to the left most table column
and so on.
Each row describes a different configuration: For exam-
ple,
closedlitespeed_subdomains_certa_defaulta
_strict_default

uses LiteSpeed, the two virtual hosts are on subdomains,
the initial host” requires a certificate, is set as the default
host and finally the software-specific strict setting is
enabled.

The generated results.html includes a search field at
the bottom, which filter the rows by regex, to improve
usability. If you search apache you get all the apache
variants, but you will not have to check all of them sepa-
rately, as cells will be annotated with a colored tooltip,
when behavior differs between variants (i.e. TLS 1.2
vs 1.3, A with client authentication vs freely accessible
A, domain vs subdomain). For example, apache A->nA
(so the SNI=none, Host=I column) gets marked because
there is diverging behavior based on which host is set as
a default, which matches the cross annotation in Table 2
at that entry.

Verifying the table confirms claim (C2).

'n =not given, X = unavailable domain

2I in paper, A in code

A.4.5 Major Claims Artifact I1I

(C3): We claim that our software scans pairs of virtual hosts
with the same STEK, following the strategy outlined in
Section 5.1.

(C4): We claim that, combined with human effort, this was
used to retrieve the results presented in Section 5.2 and
can be used to run the study again.

(CS5): We claim that the suggested countermeasures in Sec-
tion 7 are sensible.

A.4.6 Experiments Artifact ITI

(E4): Run local scan [2 human-minutes + 5 compute-
minutes]:

Preparation: Run ./setup.sh in background.
Execution: Run ./0_all_in_one.sh

Results: The script will invoke our large-scale scanning
pipeline.” It demonstrates all steps of the process, in-
cluding initial resolution and ticket prefixes, importing
a graph DB for querying scan candidates, performing
the actual scan by using session tickets cross hosts and
subsequent analysis. The relevant output is the resulting
folder analysisdump (cf. E2). Note that the code also
contains automated classification (UNSAFE), but all actual
results stem from the manual part (LOOK_AT_METRICS).
Running this successfully addresses claim (C3).

(ES): Examining the local results [15 human-minutes]:
Preparation: Run (E4).

Execution: Manually examine the contents of the
analysisdump folder.

Results: The folder contains a list of all poten-
tially successful resumptions across hosts, grouped
by ASes. Within, each path . /<target IP>/<source
IP>/ contains a separate scan result. Le., the folder
./172.19.0.5/172.19.0.3/ contains the different
resulting HTML documents when resuming at .5
with a ticket from .3: 0_initial.html is the orig-
inal page at .3, without a ticket. 1_resumed.html
contains the page received from .5 after resump-
tion. 2_*_supposed_origin.html contains the closest
HTML match, for 1_resumed.html, based on different
metrics. _meta.md summarizes these findings, including
which domain we believe to have encountered.

We then manually examined these cases to find the vul-
nerable hosts. Comprehending this workflow addresses
claim (C4).

(E6): Retry with different countermeasures [see above]:
Preparation: Enable one of the countermeasures by
editing ae-dummy-servers/docker-compose.yml in
line 12f.

Execution: Re-run experiments (E4),(ES).

3Changes have been made for running locally, but are marked with com-
ments “AE Version”

Results: Running the previous experiments with differ-
ent countermeasures enabled will yield different results
(or none at all), indicating that fewer or no potentially
unsafe resumptions were possible in the first place. This
supports claim (C5).

A.5 Notes on Reusability

Artifact III Our large-scale scanning pipeline is quite fragile
at large sample sizes and we have experienced memory
leaks, which may require occasional restarts. We also
used Neo4J community version, leading to a workaround,
as it only allows one database per container. Note, that
the generated data may be upwards of 1TB, although
our scripts have options for filtering out certain fields
from zgrab etc. Nonetheless, the full pipeline can be
easily restored from our submitted version to re-run the
experiments if desired.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims Artifact I
	Experiments Artifact I
	Major Claims Artifact II
	Experiments Artifact II
	Major Claims Artifact III
	Experiments Artifact III

	Notes on Reusability
	Version

