ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security '25 Artifact Appendix: From Constraints to Cracks:
Constraint Semantic Inconsistencies as Vulnerability Beacons for
Embedded Systems

Jiaxu Zhao!"234, Yuekang Lid, Yanyan Zou

1,2,3,4%

, Yang Xiao!?3# Naijia Jiang! 234

Yeting Li'?3#, Nanyu Zhong!?3#, Bingwei Peng'?3*, Kunpeng Jian!234, Wei Huo!:234%
nstitute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China
3Key Laboratory of Network Assessment Technology, Chinese Academy of Sciences, China
“Beijing Key Laboratory of Network Security and Protection Technology, China
5University of New South Wales, Australia

A Artifact Appendix

A.1 Abstract

This artifact presents NUWA, a novel static analysis tech-
nique that leverages constraint semantic inconsistencies to
detect vulnerabilities in embedded systems. NUWA achieves
scalable and precise vulnerability discovery by addressing
the challenges of identifying constraint semantics across di-
verse implementations and accurately extracting them. We
implemented NUWA and evaluated it using known vulnera-
bility datasets, including 31 vulnerabilities from 13 vendors,
and compared its performance to five state-of-the-art (SOTA)
tools.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

NUWA is designed for discovering vulnerabilities in embed-
ded firmware. It does not pose any direct risk to the evaluator’s
system security, data privacy, or other ethical concerns dur-
ing its execution. NUWA operates on firmware images in an
offline manner and does not require network access or inter-
action with live systems. Moreover, NUWA does not disable
any system security mechanisms nor perform any destructive
operations by default.

As NUWA is open-sourced, it is technically possible for
users to discover real-world vulnerabilities. However, NUWA
is released strictly for academic research purposes. We
strongly encourage that any vulnerabilities discovered using

E]Corresponding Authors.

the tool be reported in accordance with responsible disclo-
sure practices, as outlined in Section 4.5 of our paper, to help
protect the broader Internet ecosystem.

A.2.2 How to access

The source code necessary to evaluate NUWA, along with
the dataset used in our paper and the Python virtual environ-
ment required to run the tool, is available in our archived
Zenodo repository at: https://doi.org/10.5281/zenodo.
15605329. This DOI provides a stable and citable reference
to the evaluated version of the artifact, as required for the
Artifacts Available badge.

A.2.3 Hardware dependencies

Our evaluation of NUWA was conducted on a host machine
with a 28-core Intel Xeon processor and 256 GB of RAM
running Ubuntu 22.04. However, NUWA does not require any
specific hardware features and can run on any Linux-based
operating system. No specialized hardware (e.g., GPU, FPGA,
or hardware counters) is needed. Higher-end configurations
may improve performance, but they are not mandatory for
functionality. We recommend at least 8 CPU cores and 32 GB
of RAM for smooth execution and reasonable analysis time.

NUWA can also be executed within a virtual machine envi-
ronment and does not require root privileges for installation
or execution.

A.2.4 Software dependencies

To evaluate NUWA, the most critical requirement is the instal-
lation of IDA Pro (version 9.0 or 9.1) with full decompiler
plugin support. Since IDA Pro is a commercial reverse engi-
neering software, we are unable to provide a pre-configured


https://doi.org/10.5281/zenodo.15605329
https://doi.org/10.5281/zenodo.15605329

environment containing it. Evaluators must obtain a valid
license and install the software independently.

In addition, NUWA was evaluated using Python version
3.10.12, and we strongly recommend using the same version
to ensure compatibility and reproducibility.

A.2.5 Benchmarks

We used two datasets to evaluate NUWA. The first is a known-
vulnerability dataset, included in the vuln_dataset folder,
which consists of firmware samples containing vulnerabil-
ities with publicly available ground truth. The second is a
firmware dataset used for discovering previously unknown
vulnerabilities, included in the firmware_dataset folder. Due
to ongoing coordination with vendors and responsible disclo-
sure processes, only a subset of the firmware images in this
dataset can be made publicly available at this time.

A.3 Set-up
A.3.1 Installation

As described in Section A.2.4, to download and install depen-
dencies as well as the main artifact, you only need to install
IDA Pro (version 9.0 or 9.1) and Python (version 3.10.12 is
recommended).

Then, follow the instructions provided in our Zenodo repos-
itory to configure the Python virtual environment.

Or you can use NUWA in the Docker provided in our Zen-
odo repository, which only you need to install IDA Pro and
configure IDALib.

A.3.2 Basic Test

* Modify 104 lines of code in main.py. Change for
todo_item in binary_todo to "for todo_item in bi-
nary_todol"

e Enter the known vulnerability folder defined in bi-
nary_todol

* Run main.py in the python virtual environment.

e In the known vulnerability folder defined by bi-
nary_todol, there are the outputs after firmware unpack-
aging, the front-end source identification output (front
folder), the front-end constraint analysis results (fron-
tend.log), and the back-end constraint analysis results
(backend.log).

¢ In the back-end analysis results, the function summary
analysis results, slicing results, constraint extraction re-
sults, and semantic inconsistencies results between back-
end explicit and desired constraints are listed in detail.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): NUWA can detect 28 known vulnerabilities and 12
additional known vulnerabilities. This is proven by the
experiment E1.

(C2): The constraint extraction and constraint semantic in-
consistencies results are proven by the experiment E2.

A.4.2 Experiments

(E1): [Known Vulnerabilities Detection] [5-10 compute-
hour + 80GB disk]
Execution: Run main.py in the python virtual environ-
ment.
Results: The analysis result is in each vulnerability
folder. The vulnerability detection result need to be con-
firmed manually.

(E2): [Constraint Analysis] [12 human-hour]
How to: Manually analyse the result file: frontend.log
and backend.log. Among them, the semantic inconsis-
tency between the back-end explicit constraint and the
desired constraint has been automatically analysed in
backend.log, while the semantic inconsistency between
the front-end and back-end explicit constraints requires
manual analysis of the display constraints in frontend.log
and backend.log.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


