
USENIX Security ’25 Artifact Appendix: S/MINE: Collecting and
Analyzing S/MIME Certificates at Scale

Gurur Öndarö1, Jonas Kaspereit1, Samson Umezulike2,
Christoph Saatjohann1, Fabian Ising2, and Sebastian Schinzel1,2

1Münster University of Applied Sciences
2Fraunhofer SIT and National Research Center for Applied Cybersecurity ATHENE

A Artifact Appendix

A.1 Abstract

We present the first comprehensive analysis of real-world
S/MIME certificates used for digitally signing and encrypting
emails. Our study focuses on the structure of the S/MIME PKI,
the cryptographic properties of issued certificates, and their
compliance with emerging standards such as the CA/Browser
Forum’s S/MIME Baseline Requirements. To conduct this
study, we collected over 41 million unique X.509 certificates
from public address books, i.e., LDAP servers, of which 38
million are suitable for use with S/MIME in email clients.
Despite the inherent complexity of S/MIME trust chains, we
developed and applied a custom verification tool that success-
fully reconstructed and validated certificate chains.

The artifact includes several components to facilitate repro-
ducibility and support future research. It provides our custom-
built chain verification tool, the scripts used for certificate col-
lection and analysis, as well as the data required to replicate
the core results presented in the paper. Due to the presence
of personally identifiable information in the certificates (e.g.,
names and email addresses), we will provide the raw certifi-
cate dataset only for the second phase of the artifact evaluation
but will not publish it. However, we do publish the list of IP
addresses of the LDAP servers from which the certificates
were collected, along with the crawling script, enabling others
to replicate the data collection independently.

The goal of this artifact evaluation is to validate the replica-
bility of our findings, evaluate the usability of our tooling, and
confirm the completeness and transparency of our method-
ology. By releasing our tooling and methodology, we aim to
enable the community to extend our work, reassess the ecosys-
tem over time, and contribute to the ongoing improvement of
S/MIME infrastructure security.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our scripts and tools will be executed on the virtual machine
that we provide and host for the artifact evaluation. Our scripts
do not contain destructive steps, and no security mechanisms
have to be disabled. Please note that our public artifact con-
tains only the scripts and tools, not the certificate dataset. Due
to privacy concerns, we will not release the dataset publicly.
However, it is made available to the artifact reviewers for their
evaluation of the "Functional" and "Reproduced" badges.

A.2.2 How to access

Our artifact is available on Zenodo (https://doi.org/10.
5281/zenodo.15533203) and GitHub (https://github.
com/FHMS-ITS/SMINE/). It includes the scripts and tools we
developed and used during our research. However, the cer-
tificate dataset will not be released due to privacy concerns,
which we discuss in more detail in the paper. Consequently,
some scripts cannot be executed without a connection to a
MongoDB containing certificates.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

No specific requirements, any modern OS capable of running
Docker containers and Python scripts will suffice. The Python
requirements are bundled in a requirements.txt file as is
customary.

For artifact evaluation, we provided reviewers with access
to a local LDAP server containing certificates, which was used
to assess the functionality of our LDAP crawler. Researchers
can set up a similar local LDAP server serving certificates on
their own machine to test our crawler.

https://doi.org/10.5281/zenodo.15533203
https://doi.org/10.5281/zenodo.15533203
https://github.com/FHMS-ITS/SMINE/
https://github.com/FHMS-ITS/SMINE/


A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To use the tools and scripts in the repository, you will need
to have Python >=3.10 installed along with the required de-
pendencies. We recommend using a virtual environment to
manage dependencies.

apt install libsasl2-dev python-dev-is-python3
libldap2-dev libssl-dev

python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
export PYTHONPATH=$(pwd)

To test the crawler, set up a basic LDAP server, such
as OpenLDAP (available via Docker at https://hub.
docker.com/r/bitnami/openldap). Once the server is
running, upload certificates to it by adding them to the
userCertificate;binary attribute of the LDAP entries.

A.3.2 Basic Test

The script ∼/SMINE/basic_checks.py is provided to assert
that all components are functional and correctly configured.
It can be executed with Python as usual and will run a series
of checks, printing instructions on how to proceed if any fail,
and All checks passed! otherwise.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We implemented a crawler that crawls available cer-
tificates from an LDAP server using wildcard searches.
(E1)

(C2): Section 4 We collected 41,692,142 unique X.509 cer-
tificates from 2,879 LDAP servers, of which 38,374,783
fulfill the requirements for use with S/MIME in email
clients. We described the skewed distribution of S/MIME
certificates in Section 4.3, the Tables 2 and 3 show the
distribution among countries and continents.
Section 5 We described the distribution of different con-
figurations of Key Usage, Extended Key Usage and exist-
ing email address in Table 4. We found that 22,385,707
S/MIME certificates contained at least one email address,
in total 22,672,795 email addresses and 806,746 unique
domains. Of these, 15,865,134 contain at least one email
address issued for a domain in the Tranco 1 million list1,

1https://tranco-list.eu/list/VQ2QN

covering 30,872 domains. Using a list of free mail do-
mains2, we found that 9,123,368 certificates contain at
least one free mail address and name the most common
free-mail and non-free-mail domains. In Figure 3, we
show that most certificates have a validity period of mul-
tiple years and three years is the most common value. In
Figure 4, we show the development of different public
key algorithms over time. We find that CAs have be-
gun implementing the S/MIME Baseline Requirements
but most trusted certificates are still non-compliant. We
show that a large subset of certificates is issued by a
small number of CAs in Figure 5 and Table 5.
Section 6 We construct full certificate chains for the
majority of certificates and connect 20% to a widely
trusted root CA. All these values can be reproduced with
experiment (E2).

(C3): In Section 7 we analyzed the cryptographic keys con-
tained and found vulnerabilities in 71,214 certificates.
Table 7 shows an overview. The analysis can be repro-
duced with experiment (E3).

(C4): We implemented a tool that reconstructs and verifies
S/MIME certificate chains for a given leaf certificate.

A.4.2 Experiments

(E0.1): (Optional) Execute the preprocessing scripts. These
scripts were used to enrich the certificates in the database
with additional information. This includes, for exam-
ple, parsing X.509 certificates, classifying and flagging
S/MIME certificates, reconstructing and validating cer-
tificate chains, and labeling certificates as CA certificates.
The README file in the processing directory contains
more information about the individual tasks.
Preparation: Activate the environment as described in
appendices A.2.2 and A.3.
Execution: Execute the run.py script in the
processing directory to run all tasks.

cat assets/example_cert.json | python run.
py certs > results.json

cat assets/example_host.json | python run.
py hosts

(E1): [5 human-minutes + 30 compute-minutes]: Apply the
crawler to the LDAP server (possibly in Docker) to crawl
for certificates.
Preparation: The crawler can be tested against the
LDAP server set up in appendix A.3.1. For the artifact
evaluation, we provided an OpenLDAP Docker instance
on the virtual machine, which served a certificate sample
from our dataset and listened on port 389. Activate the
environment as described in appendices A.2.2 and A.3.

2https://gist.github.com/okutbay/
5b4974b70673dfdcc21c517632c1f984

https://hub.docker.com/r/bitnami/openldap
https://hub.docker.com/r/bitnami/openldap
https://tranco-list.eu/list/VQ2QN
https://gist.github.com/okutbay/5b4974b70673dfdcc21c517632c1f984
https://gist.github.com/okutbay/5b4974b70673dfdcc21c517632c1f984


Execution: Execute the crawler script in the
ldap_crawler directory.

python crawler.py 127.0.0.1,636,389 crawls

First, the crawler attempts to connect to port 636 on
localhost. If port 636 is unavailable, it falls back to port
389. The crawling results (certificates) and logs are then
written to the crawls directory.
Results: The crawls directory will contain a results
file located in the results subdirectory, which includes
the certificates crawled for the specified IP address. This
experiment demonstrates the functionality of our crawler.

(E2): [1 human-hour, including validating the results. Little
to no compute time when using the cache.]: Execute the
scripts in the analysis directory.
Preparation: Activate the environment as described in
appendices A.2.2 and A.3.
Execution: Execute the scripts:

python analysis/general_stats.py
python analysis/certs_per_host.py
python analysis/crawled_hosts_per_month.py
python analysis/certs_distribution.py
python analysis/smime_client_support.py
python analysis/smime_email_addresses.py
python analysis/smime_validity.py
python analysis/key_usage.py
python analysis/smime_key_algorithms.py
python analysis/smime_cas.py
python analysis/smime_br.py

Each script first attempts to load the results from a cache
file located in the assets directory, which is generated
after each run. If this file does not exist, the script will
establish a connection to the database to execute the
query. You can use the refresh argument to force the
query to be executed directly against the database like:

python analysis/smime_br.py refresh

Results: The scripts will output the numbers, tables, and
figures used in the paper.

(E3): [1 human-hour, including validating the results. Little
to no compute time when using the cache.]: Execute the
scripts in the analysis/key_analysis directory.
Preparation: Activate the environment as described in
appendices A.2.2 and A.3.
Execution: Execute the scripts:

python analysis/key_analysis/
weak_key_certs_count.py

python analysis/key_analysis/fastgcd_status.
py

python analysis/key_analysis/badkeys.py
python analysis/key_analysis/ec_keys.py

python analysis/key_analysis/
factordb_status.py

python analysis/key_analysis/
pwnedkeys_blocklist_merge_status.py

Results: The scripts would output the numbers, tables,
and figures used in the paper, provided they are run with
the appropriate dataset.

(E4): [5 human minutes]: Reconstruct certificate chains with
the chain verification tool.
Preparation: Activate the environment as described in
appendices A.2.2 and A.3.
Execution: Execute the Python tests in the
chain_verification directory:

python tests/run_all_tests.py

To reconstruct a certificate chain using the chain ver-
ification tool, run experiment E0.1. This experiment
includes the cert_chains_task.py script located in
the tasks directory, which applies the chain verification
tool to the given certificate. After execution, refer to the
results.json file for the chain verification output.
Results: The chain verification tool provides a chain for
the given certificate

A.5 Notes on Reusability
The crawler, in combination with the list of LDAP servers,
can be used to recreate the certificate dataset. Please do so
responsibly and follow best practices for scanning. Analysis
scripts can be used and extended to analyze the resulting
dataset.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


