ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
zusenix susenix susenix

4 »

AAAAAAAAAAA

AVAILABLE REPRODUCED

USENIX Security 25 Artifact Appendix:
COLLISIONREPAIR:First-Aid and Automated Patching for Storage
Collision Vulnerabilities in Smart Contracts

Yu Pan”", Wanjing Han"", Yue Duan*, Mu Zhang"
TUniversity of Utah, United States *Singapore Management University, Singapore
T{yu.pan, wanjing.han, mu.zhang} @utah.edu *yueduan@smu.edu.sg

A Artifact Appendix

A.1 Abstract

This artifact accompanies the paper “COLLISIONREPAIR:
First-Aid and Automated Patching for Storage Collision
Vulnerabilities in Smart Contracts”. This repository con-
tains scripts and results for evaluating smart contract
patching. Detailed patching instructions are provided in
octopus/PATCHING.md. The README file offers step-by-step
guidance for running the evaluation.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

COLLISIONREPAIR is a system designed to patch upgrade-
able smart contract bytecode with storage collision vulnera-
bilities. All experiments in this study were conducted in con-
trolled, sandboxed environments using Ganache with isolated
snapshots of the Ethereum blockchain. As a result, traditional
ethical concerns associated with cybersecurity research—such
as experimentation on live systems, data privacy, or human
subject involvement—were not applicable. The experiments
posed no risk to real-world blockchain deployments or opera-
tions, even when executing vulnerable contracts or replaying
attack transactions.

Importantly, COLLISIONREPAIR is a mitigation tool, not
a detection mechanism—it reveals vulnerabilities only when
an actual attack occurs. The vulnerable contracts evaluated
in our study were sourced from the CRUSH dataset, where is-
sues had already been disclosed and, in some cases, exploited.
Our transaction replays confirm that COLLISIONREPAIR suc-
cessfully blocks these previously observed attacks. No new
vulnerabilities were discovered in the additional contracts
we tested; should any new issues emerge, we will follow re-
sponsible disclosure practices, including notifying developers
and CISA using publicly available contact information on
Etherscan.

*Yu Pan and Wanjing Han contributed equally to this work.

This research complies with all relevant legal and ethical
standards. No additional regulatory approvals were required.
Our work advances the field of blockchain and smart contract
security without introducing new risks or ethical concerns.

A.2.2 How to access

https://doi.org/10.6084/m9.figshare.29150726

A.2.3 Hardware dependencies

* Processor: Any 64-bit processor, such as Intel Core Pro-
cessor Series.

* Memory: 4 GB RAM or higher.

 Storage: 1 GB or more available disk space.

A.2.4 Software dependencies

Tool Purpose

Node.js >=v16 For deploying contracts and running scripts
Python >=3.10.16 | For static verification and patching
Ganache Local Ethereum testnet (must be running)
Octopus Bytecode instrumentation engine

Table 1: Tool requirements and their purposes.

Software dependencies are listed in Table 1. For more de-
tails and relevant links, please refer to the README.

A.2.5 Benchmarks

Around 4,000 contracts were used to verify the correctness
of patching and to evaluate transaction replay behavior after
patching. Details of the project structure can be found in the
README under the Directory Structure section.

Data The contracts.txt file lists all contract addresses
to be processed. The results/ directory stores all output
data for each contract, including ABI, bytecode, transactions,
and replay results.

https://doi.org/10.6084/m9.figshare.29150726

Scripts All main scripts are located in
evaluation/correctness/scripts/correctness/.
These include deployment, replay, patching, and result
filtering scripts.

Core Patch Function The patch.sh script is provided to
patch contracts in the correctness dataset. Run it from either
the root directory or the evaluation/correctness direc-
tory to apply automated patching to all contracts listed in
contracts.txt.

A.3 Set-up
A.3.1 Installation

Install Octopus Our patching tool is built on a modified
version of Octopus (https://github.com/FuzzingLabs/
octopus).

You can install it using either of the following methods:

A.4.2 Experiments

Applying the Patch Tool Before applying the patching tool,
back up the existing results/ directory to preserve previous
outputs:

cp -r evaluation/correctness/results evaluation/
correctness/results_backup

Deploy the StorageTracker Contract Ganache must be
running at http://127.0.0.1:7545.
Deploy the monitoring contract and update the configuration:

node js_scripts/monitor/deploy_monitor.js

cd octopus
sudo python3 setup.py install
cd -

Run the Patching Script After deploying StorageTracker,
apply the patch to all contracts in the dataset using the follow-
ing commands:

chmod 777 patch.sh
./patch.sh

or

Example output:

cd octopus
pip install -r requirements.txt
cel =

Install Node.js Dependencies Navigate to the correctness
evaluation directory and install the required Node.js packages:

INFO - [+] Runtime code detected
INFO - [+] Runtime code detected

WARNING - function signatures collision: [’symbol()’,
"link_classic_internal (uint64,int64)’]
WARNING - function signatures collision: [’decimals

()", "available_assert_time (uintl6,uint64)’]

cd evaluation/correctness
npm install
cd -

A.3.2 Basic Test

Verifying Patched Bytecode Script: verify_patch.sh
evaluation/scripts/verify_instrumentation.py:
This script takes a folder as input, automatically compares
the original and patched bytecode, and displays the results.

chmod 777 verify_patch.sh
./verify_patch.sh

Expected outputs can be found in the README under the
Verifying Existing Results section.

A.4 Evaluation workflow
A.4.1 Major Claims

COLLISIONREPAIR can successfully patch all contracts in
the provided benchmark and can replay most real-world trans-
actions both before and after patching in the Ganache envi-
ronment.

Performance: Patching 4,000 contracts takes approximately
2 to 4 hours depending on hardware.

Regenerating transaction replay results is optional and de-
tailed in the Regenerating Dynamic Execution Results section
of the README.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://github.com/FuzzingLabs/octopus
https://github.com/FuzzingLabs/octopus
http://127.0.0.1:7545
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

