
USENIX Security ’25 Artifact Appendix:
Leuvenshtein: Efficient FHE-based Edit Distance Computation with

Single Bootstrap per Cell

Wouter Legiest, Jan-Pieter D’Anvers, Bojan Spasicm Nam-Luc Tran, Ingrid Verbauwhede

A Artifact Appendix

The following is an Artifact Appendix for the USENIX Secu-
rity ’25 conference, detailing the Leuvenshtein algorithm for
efficient Fully Homomorphic Encryption (FHE)-based edit
distance computation. This document provides a roadmap
for evaluating the artifact, including hardware, software, and
configuration requirements, as well as instructions for repro-
ducing claims.

USENIX Security ’25 Artifact Appendix: Leu-
venshtein: Efficient FHE-based Edit Distance
Computation with Single Bootstrap per Cell

A.1 Abstract

Our paper develops a new algorithm to efficiently calculate
the edit distance on encrypted data using Fully Homomorphic
Encryption. The artifact is a Rust project that implements the
Leuvenshtein algorithm. The code is available via a GitHub
link and a Zenodo repository. Both repositories are equivalent,
but the GitHub repository is easier to clone due to its folder
structure.

A.2 Description & Requirements

This section provides the necessary information to recreate
the experimental setup used for this artifact. It includes the
minimal hardware and software requirements , and details
benchmarks used to produce the results.

A.2.1 Security, Privacy, and Ethical Concerns

There are no security, privacy, or ethical concerns as the arti-
fact evaluation involves running a Rust or Python program.

A.2.2 How to Access

Our codebase can be accessed at: https://github.com/
WoutLegiest/leuvenshtein_ae. For completeness, the
code is also available at: https://zenodo.org/records/

15871491. However, we recommend using the GitHub repos-
itory due to its support for a folder structure.

A.2.3 Hardware Dependencies

Our experiments were conducted on a dual AMD EPYC
9174F 16-Core Processor (64 threads in total) running Ubuntu
22.04, with 512 GiB RAM. As we are aiming only for the
functional badge, the exact setup and outcomes are not criti-
cal.

A.2.4 Software Dependencies

Python: Versions 3.8 to 3.12. Rust: Version 1.80.

A.2.5 Benchmarks

Within the main file, example strings of lengths 8, 100, or 256
can be selected for testing.

A.3 Set-up
Our experiments were run using rustup version 1.80.

A.3.1 Installation

Rust Our experiments were conducted using Rust ver-
sion 1.80. To install this specific Rust version, use rustup
install 1.80.0. Further instructions can be found at
https://www.rust-lang.org/tools/install. Rust can
be installed using the following command:

Can be installed through:

• curl -proto ’=https’ -tlsv1.2 -sSf
https://sh.rustup.rs | sh

• After installation, reload the terminal or source the Rust
environment file as indicated in the final step of the in-
stallation. Then, install the specific Rust version:

• rustup install 1.80.0

The remaining dependencies will be downloaded by the
Cargo tool.

https://github.com/WoutLegiest/leuvenshtein_ae
https://github.com/WoutLegiest/leuvenshtein_ae
https://zenodo.org/records/15871491
https://zenodo.org/records/15871491
https://www.rust-lang.org/tools/install


Concrete The concrete library is a python library that needs
to be installed with

1. Install the concrete library: pip install
concrete-python==2.8.1

2. Clone the correct Concrete version git clone https:
//github.com/zama-ai/concrete ; cd concrete
; git reset --hard fd9db128869818293d3b4336
f44e5938cfe5c480

3. Copy the patch file to the folder and apply our patch to
the repo: git apply ../concrete_ascii.patch

A.3.2 Basic Test

The basis implementation can be run with

• cargo +1.80 run -release

Our preprocessing version can be run with:

• cargo +1.80 run -release -bin
leuvenshtein_preprocess

This will run the algorithm and the plaintext algorithm and
will time the encrypted execution.

Concrete

• Go to Levenshtein distance folder: cd concrete/fron
tends/concrete-python/examples/levenshtein_
distance/

• Run the wanted size of concrete instance

– python3 levenshtein_distance.py --dista
nce abcdefgh adcdefgf --alphabet ascii
--max_string_length 8

– python3 levenshtein_distance.py --dista
nce BEgfEHGfShHtvKazXNeEvNWmvfbrAWyAYZj
kXvNkmEajQNCTKZnkPeEDadvQtUnGhJRpWZASUM
fXArGZFSUYgFeCAWxSvKNdpsnV EEhjZMnFsMFC
sKnnyZvtrPeKxfmJfJVJNcYAwYmrGNgTUUSAgdu
NQZttWFdYFKddcKjkUEpPUmGkszZSVVNWkThxSF
RgMzrbqATe --alphabet ascii --max_strin
g_length 100

– python3 levenshtein_distance.py --dista
nce mizf30WE1Pzqu0HtZKMMCE6f3NE2TGPPYmg
SunfkBJqGJqveg97i61fu5KG7z8UmR5DVVALk5C
CL0fzEv687LdRuunZ8SYUFmQEf66dXZ6vejGKR7
HhSiY5XLWbCYFddqtFEX2QjmHRmqB7tngfG7m0C
BX1D6wcvLyYp0rpiv1GSw5T1ZfuT2mcjHUi05zd
6N4EqLmTP8ETEc2vQaJcVGSaXRETejNebwwb4m9
wUUMd0abrEQeLw3Ubn9un6tTeP yVL0hi1V8mUQ
akFWZGEHwQBduvaTtKC6dNMbnyEiU29pKdwLfCn
Y7jWceXQizTiwhGxiAkuwvdcgpTtaZW3XJ6t75H

L86nV2QPUWaxipf6x7JE8NPQT0RrzcheaydjLdP
yUhAQ3UhJ2bLVE5wtNDAgdBgX3N5Ru4iXqbFXWD
5ZAbzniVaWr5iE0wQenwt8QjqERf6A67P9rLkmG
PKS8LHJxttCKRBWM3qr1F93JZtEhGKcQ1079pUX
cCgAvLhCWi --alphabet ascii --max_strin
g_length 256

A.4 Evaluation workflow
The basic workflow for processing two strings of length 8
is described in Section A.3.2. For larger string sizes, the
main function needs to be adapted. In both (main.rs and
main_prepros.rs) files, within the fn main() function, al-
ternative inputs for ASCII encoding of lengths 100 and 256
are provided in comments. These must be uncommented to
test them.

A.4.1 Major Claims

(C1): The outcome of the Leuvenshtein algorithm is the cor-
rect edit distance, calculated on encrypted data.

(C2): The execution of the Leuvenshtein algorithm is remark-
ably faster than the execution of the Concrete Compiler.

A.4.2 Experiments

Run the experiments as described in Section A.3.2 for string
lengths 8, 100, and 256. Note that the 256-length input for
Concrete is expected to take over a week to run and should not
be completed. We anticipate that the decrypted outcome of
Leuvenshtein will be identical to the outcome of the plaintext
version and the Concrete implementation.

A.5 Notes on Reusability
The algorithm itself can be implemented in any industry con-
text, provided the cryptographic scheme and parameters re-
main consistent.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


