
USENIX Security ’25 Artifact Appendix: Haunted by Legacy:
Discovering and Exploiting Vulnerable Tunnelling Hosts

Angelos Beitis
DistriNet, KU Leuven

angelos.beitis@kuleuven.be

Mathy Vanhoef
DistriNet, KU Leuven

Mathy.Vanhoef@kuleuven.be

A Artifact Appendix

A.1 Abstract
For the artifact evaluation, we provide the ZMap scanning
modules, which can be used to scan the Internet to identify vul-
nerable tunnelling hosts. We additionally provide the scripts
to test whether individual hosts are potentially vulnerable to
any of the identified vulnerabilities. Lastly, we give the attack
scripts for the Tunnelling-Temporal Lensing (TuTL) attack.
Each of the provided tools is accompanied by a README,
which further explains how the tool works and how it can be
used.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The zmapv6-main.zip is a software used for scanning the
entire IPv4 address space, without requiring the hosting of
an opt-out page or the maintenance of a blocklist. We do
not recommend scanning the entire IPv4 address space for
the functional evaluation; instead, you can use it to scan the
individual addresses provided by us. These vulnerable hosts
are under our control.

A.2.2 How to access

https://doi.org/10.5281/zenodo.15706733

A.2.3 Hardware dependencies

You will need access to a VM instance (e.g., AWS). This in-
stance should have an IPv4 and IPv6 address which are glob-
ally routable, as well as disabled firewall rules (E.g., Your ma-
chine must be capable of sending and receiving TTL-expired
packets).

A.2.4 Software dependencies

You need to have access to an Ubuntu machine which has IPv6
and IPv4 Internet access. We recommend AWS instances.
Furthermore, ensure that there are no firewall restrictions

potentially blocking traffic on your instance. Any additional
dependencies are covered in the installation section.

A.2.5 Benchmarks

None

A.3 Set-up

A.3.1 Installation

First, create a vulnerable IP6IP6 tunnelling interface:

chmod +x ip6ip6.sh
sudo ./ip6ip6.sh <IPV6_ADDR> \
<IPV6_ADDR_RANDOM>

To install ZMap, export the ZIP file and do:

sudo apt-get install build-essential cmake libgmp3-
dev gengetopt libpcap-dev flex byacc libjson-c-dev
pkg-config libunistring-dev
cmake .
make -j4
sudo make install

For temp_lens.zip, export the ZIP file and do:

sudo apt install tcpreplay
pip install netifaces
pip install scapy

For tunneltester.zip:

python3 -m venv venv
source venv/bin/activate
pip install wheel scapy==2.6.1
sudo su
source venv/bin/activate

https://doi.org/10.5281/zenodo.15706733


A.3.2 Basic Test

Tunneltester: For tunneltester

sudo python3 tunnel_tester.py \
<INTERFACE> -t6 \
2600:1f18:2869:9b00:5b7b:92c9:d861:d151 \
-P6 <IPv6>

ZMap: For ZMap:

sudo zmap 34.171.178.123 -M ipip \
- -external-ipv4-address <IPv4_ADDRESS>

A.4 Evaluation workflow

A.4.1 Major Claims

Our artifacts provide the means to identify vulnerable hosts,
either individual machines or multiple machines, through
Internet-wide scans.
(C1): Our artifacts can successfully identify vulnerable tun-

nelling hosts.
(C2): Our attack script can successfully be used to conduct

a tunnelled-temporal lensing attack as described in the
paper. For the functional badge, the tunneled-temporal
lensing script needs to be able to collect latencies and
send packets that will eventually reach a host.

A.4.2 Experiments

Instructions on how to run each component.
(E1): [Tunneltester] [5 human-minutes + 2 compute-

minutes]:
How to: The tunneltester script will detect two of our
own hosts for the listed vulnerabilities in the paper. Re-
place <INTERFACE> with your machine’s main inter-
face, e.g., eth0, <PRIVATE_IPV4> with the private IPv4
address of your machine in case it is behind a NAT
(can be left empty if this is not the case), and <PUB-
LIC_IPV4> and <IPv6> with your VM’s global IPv4
and IPv6 addresses, respectively.
Execution: Run the following two commands:

sudo python3 tunnel_tester.py \
<INTERFACE> -t 3.90.110.118 -t6 \
2600:1f18:2869:9b00:5b7b:92c9:d861:d151 \
-s 172.31.29.15 -s6 \
2600:1f18:2869:9b00:5b7b:92c9:d861:d151 \
-p <PRIVATE_IPv4> -P <PUBLIC_IPv4> \
-P6 <IPv6>

sudo python3 tunnel_tester.py <INTERFACE> \
-t 34.171.178.123 \
-s 34.171.178.123 \
-p <PRIVATE_IPv4> -P <PUBLIC_IPv4>

Results: The script will output whether or not the host
is vulnerable to a specific protocol. Specifically, you are
looking to see the VULNERABLE text. The 3.90.110.118
host should be vulnerable to IPv6-based protocols (such
as IP6IP6, GRE6 etc). AWS cannot send TTL-expired
packets, meaning TTL-expired scans will not detect vul-
nerable hosts. The 34.171.178.123 host is vulnerable to
IPv4-based protocols, but Google Cloud blocks the host
from replying to ICMP Echo requests.

(E2): [ZMap Scanning modules] [5 human-minutes + 2
compute-minutes]:
How to: The ZMap Scanning module is used to iden-
tify vulnerable tunnelling hosts on the Internet. It can
also be used to scan for an individual host. We provide
a script named zmap.sh, which will go over some of
the scanning modules to scan specific hosts under our
control.
Execution: Run the following command:

chmod +x zmap.sh
sudo ./zmap.sh <YOUR_IPv4_ADDRESS>
<YOUR_IPv6_ADDRESS>

Results: The script goes over the scanning modules.
You should see for each one the following:
1 done (137 p/s avg); recv: 1 1 p/s, indicat-
ing that the host scanned has been identified in the
scan. For the final 4in6 scan, the scanning module will
not detect the host since the inner source IP will be
translated and the host does not spoof. To circumvent
this, the script will catch the traffic in tcpdump. You
should see the following:
IP 3.90.110.118 > <YOUR_IPv4>: ICMP echo
reply...

(E3): [Tunneled-Temporal Lensing Attack] [15 human-
minutes + 10 compute-minutes]:
How to: The tunnelled-temporal lensing attack can be
used to concentrate traffic towards the attacker in time.
For convenience, this script assumes the target is also
a vulnerable tunnelling host. You will need to first cre-
ate a vulnerable IP6IP6 interface, by running the script
ip6ip6.sh as explained in Section A.3.
Execution: First create a vulnerable tunnelling inter-
face by running:

sudo ./ip6ip6.sh <IPV6_ADDR> \
<IPV6_ADDR_RANDOM>



Where <IPV6_ADDR_RANDOM> is the IPv6 address for
the newly created interface.
Prepare two new screens to capture the traffic:

screen -S outgoing
Press Ctrl+AD
screen -S incoming
Press Ctrl+AD
screen -S attack
Press Ctrl+AD

then create a file named spoofers.txt and add the two
addresses listed below inside:

chmod +x create_spoofers.sh
sudo ./create_spoofers.sh \
2600:1f18:2869:9b00:bec4:73f4:9a4e:18ce \
2600:1f18:2869:9b00:21b7:96f:47b9:eed7

Run the following script. We set the sample size to 10.
In the paper, the sample was 1000, but for convenience,
we will use a short sample size of latencies in the artifact
functionality assessment:

screen -r attack
sudo python3 -m src.main -i eth0 -vic
<IPV6_ADDRESS> -type ipip6 -alg bf -att 6
-sample 10 -spoo_f ./spoofers.txt

You should start seeing Message Received!. After la-
tency collection is complete, you will be asked to start
the attack. Ready to attack? yes/no: Do not press
anything yet. Then do:

Press Ctrl+AD
screen -r outgoing
sudo ./outgoing.sh <IPv6 Address>
Press Ctrl+AD
screen -r incoming
sudo ./incoming.sh <IPv6 Address>
Press Ctrl+AD
screen -r attack

Now you will be back where you are asked to Ready to
attack? yes/no:. Type yes and press enter. You can
then press no to the following prompt.
The two files outgoing.pcap and incoming.pcap will
be created after terminating the two scripts. These files
have the incoming and outgoing traffic of the attack,
respectively. This traffic can then be used for analysis in
wireshark. Specifically, when opened in wireshark,
you can go to Statistics > I/O Graphs and set the
interval to 20ms.

A.5 Notes on Reusability
The addresses provided here are vulnerable and under our
control and will be shut down after the artifact evaluation
phase to prevent abuse.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


