ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
é;usenlx é;usenlx susenix

ASSOCIATION ASSOCIATION @ ssocition

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: FABLE: Batched Evaluation on
Confidential Lookup Tables in 2PC

Zhengyuan Su”, Qi Pang’, Simon Beyzerov’, Wenting Zheng’
“Tsinghua University, "Carnegie Mellon University

A Artifact Appendix

A.1 Abstract

This artifact provides the code and instructions to reproduce
the major claims of FABLE, an efficient 2PC protocol for con-
fidential LUT evaluation, with lightweight client computation,
concretely efficient server computation, scalable communi-
cation, and LUT confidentiality. In particular, it provides the
instructions and scripts to reproduce all evaluation results of
FABLE and its baselines. It also contains easy-to-use scripts
to reproduce FABLE’s advantages in the two applications
mentioned in the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

To the best of our knowledge, executing this artifact does not
impose any risk on the machine’s security, data privacy, or
any other ethical concern. The artifact showcases an efficient
2PC protocol that helps enhance user privacy in real-world
collaborative computation. We believe the artifact is safe to
execute.

A.2.2 How to access

The artifact is available at https://doi.org/10.5281/
zenodo.15586635, which contains two git repositories.

If you prefer to download from GitHub, please clone the
repositories https://github.com/cmu-cryptosystems/
FABLE and https://github.com/cmu-cryptosystems/
FABLE-AE, and place them side by side under the same folder.

A.2.3 Hardware dependencies

Our code does not require specific hardware features to com-
pile and run. However, to help reproduce the numbers shown
on the paper, we provide two c6i.16xlarge instances on AWS
EC2.

We would like to provide the reviewers with access via SSH
to our two c61.16xlarge instances, which contain the envi-
ronments to execute the code. To gain access to the machines,
please follow the instructions on the HotCRP system.

A.2.4 Software dependencies

In our artifact, we provide multiple Dockerfiles to set up the
environments.

To set up the environment to build and run FABLE, build
the Dockerfiles under the two folders:

docker build ./FABLE -t fable:1.0
docker build ./FABLE-AE -t fable-ae:1.0

Note that you may need to run the commands under sudo if
you are not a root user.

Some baselines, including the DORAM baselines and
Crypten’s application baseline, require separate environments
to execute. However, they are not mandatory because we pro-
vide their performance numbers in the artifact. If you prefer to
reproduce those numbers, please run the following commands
to build the Docker images:

bash FABLE-AE/ORAMs/build-dockers.sh
docker build FABLE-AE/Crypten -t crypten

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

FABLE is installed inside the Docker environment while the
image fable:1.0 is built. Therefore, no operation is needed
for installation other than building the Dockerfile.

A.3.2 Basic Test

To check that the installation is successful, first start a Docker
container with

docker run -it -w /workspace/FABLE fable:1.0

Inside the container, run the following commands:

./build/bin/fable 127.0.0.1 r=1 1=1 &
./build/bin/fable 127.0.0.1 r=2 1=1

https://doi.org/10.5281/zenodo.15586635
https://doi.org/10.5281/zenodo.15586635
https://github.com/cmu-cryptosystems/FABLE
https://github.com/cmu-cryptosystems/FABLE
https://github.com/cmu-cryptosystems/FABLE-AE
https://github.com/cmu-cryptosystems/FABLE-AE

It will run a toy example of FABLE in 10 seconds, report the
breakdown of computation and communication, and check
the result.

A.4 Evaluation workflow
A.4.1 Major Claims

The major claims of FABLE consist of the following:

(C1): FABLE achieves orders of magnitude speedup over
prior baselines under both LAN and WAN networks.
In particular, FABLE achieves up to 28-101 x speedup
in LAN environments and up to 50-393 x speedup in
WAN environments. This is proven by the end-to-end
performance evaluation described in Section 6.3 and
Figure 5.

(C2): FABLE’s performance benefits from multi-threading
and batched processing. The benefit from multi-
threading is described in Section 6.2 and Figure 4. The
benefit from batched processing is described in Sec-
tion 6.3, Figure 6, and Figure 7.

(C3): FABLE’s performance remains competitive even when
the OPREF is replaced with the more secure AES, as
shown in Table 4.

(C4): FABLE also exhibits orders of magnitude speedup
under two applications. As explained in Section 6.4, FA-
BLE achieves a speedup of 456x (178 x) for secure em-
bedding lookup and a speedup of 15x (27 x) for secure
query execution under LAN (WAN).

A.4.2 Experiments

(E1): [Main Experiments] [30 human-minutes + 10 compute-
hour + 1GB disk]: run FABLE under various configura-
tions and the SPLUT baseline, and reproduce the main
plots.

Preparation: In this experiment, we use the fable-ae
image. Specifically, in the root directory of our artifact,
launch a container with

docker run -it --net=host --cap-add=NET_ADMIN
-v $PWD/FABLE-AE:/workspace/AE -w
/workspace/AE fable-ae:1.0

on two instances. Then, set two environment variables
on both instances: HOST and CLIENT, which are the IP
addresses of the server and the client, respectively.
Execution: To launch the main experiments, run

bash main_experiments.sh 1 0.0.0.0

and
bash main_experiments.sh 2 $HOST
on the server and the client, respectively.

After the main experiments finish, please launch the
SPLUT experiments with

bash baseline_splut.sh 1 0.0.0.0

and

bash baseline_splut.sh 2 S$HOST

on the server and the client, respectively.
Then, synchronize the experiment results with

bash sync_log_recv.sh $CLIENT

and

bash sync_log_serv.sh

on the server and the client, respectively.
Finally, produce the plots and the tables with

python3 microbench.py

python3 draw.py

python3 breakdown_table.py
python3 breakdown_table.py --aes

on the server.
Results: You should find 60 log files under
FABLE-AE/logs/main and 12 log files under
FABLE-AE/logs/baseline/splut on both instances.
On the server side, you will also find the following plots
under FABLE-AE/plots:

Figure 4: runtime_vs_threads.pdf.

Figure 5: time_lutsize_network_clipped.pdf.

Figure 6: 24_time_bs.pdf.

Figure 7: comm. pdf.
Also, the execution of breakdown_table.py prints Ta-
ble 4 in the standard output.

(E2): [Application] [30 human-minutes + 1.5 compute-hour]:
run the applications and reproduce the speedups.
Preparation: In this experiment, we still use the
fable-ae image. Specifically, in the root directory of
our artifact, launch a container with

docker run -it --net=host --cap-add=NET_ADMIN
-v SPWD/FABLE-AE:/workspace/AE -w
/workspace/RAE fable-ae:1.0

on two instances. Then, set two environment variables
on both instances: HOST and CLIENT, which are the IP
addresses of the server and the client, respectively.

Execution: To launch the application experiments, run

bash applications.sh 1 0.0.0.0

and

bash applications.sh 2 $HOST

on the server and the client, respectively.

Afterwards, run python3 read_app_speedup.py to
see the speedup for both applications.

Results: You should find 6 log files under
FABLE-AE/logs/applications on both instances.

The Python file will print the speedups of both applica-
tions in the standard output, which should be over 100 x
for the embedding lookup and over 10x for the secure
join execution.

(E3): [Optional Reproduction of DORAM Baselines] [30

human-minutes + 1.5 compute-hour]: reproduce the DO-
RAM baseline performance. This step is optional as we
already provide the evaluation results in our artifact.
Preparation: In this experiment, we use DUORAM’s
image. Please ensure that you have already executed

bash FABLE-AE/ORAMs/build-dockers.sh

Execution: To launch the DORAM baseline experi-
ments, run

bash FABLE-AE/ORAMs/repro-dockers.sh

on the server.

Afterwards, run python3 draw.py --doram-baseline
to see the plots with the DORAM baseline logs.
Results: You should find 12 log files under
FABLE-AE/logs/baseline/floram and another
12 log files under FABLE-AE/logs/baseline/duoram.
You will find the same set of plots as E1.

(E4): [Optional Reproduction of the Crypten baselines] [30

human-minutes + 1.5 compute-hour]: reproduce the
Crypten baseline performance. This step is also optional
as we already provide the evaluation results in our arti-
fact.

Preparation: In this experiment, we use the crypten
image. Please launch the Docker container on two in-
stances:

docker run -it --net=host --cap-add=NET_ADMIN
-v $PWD/FABLE-AE:/workspace/AE -w
/workspace/AE crypten

Then, set two environment variables on both instances:
HOST and CLIENT, which are the IP addresses of the
server and the client, respectively.

Execution: To launch the experiments, run

bash Crypten/reproduce.sh 0 $HOST S$CLIENT
and
bash Crypten/reproduce.sh 1 $HOST $CLIENT

on the server and the client, respectively.
Afterwards, run

python3 read_app_speedup.py --crypten-baseline

to see the speedup for both applications.

Results: You should find 10 log files in total under
FABLE-AE/logs/applications. The speedups will be
similar to E2.

A.5 Notes on Reusability

The reproduction only uses a subset of all flags supported
in FABLE. In this section, we elaborate the flags of the exe-
cutable build/bin/fable.

¢ p: the port number for communication. Default: 8000.
* bs: the batch size of the input. Default: 4096.

¢ db: the LUT size. Default: 2*LUT_INPUT_SIZE, i.e., the
maximum supported size.

¢ seed: the random seed. Default: 12345.

* par: Whether enable parallelization. Default: 1 (i.e., en-
able parallelization).

e thr: Number of threads used in parallelization. Only
useful when par=1, Default: 16.

e 1: Type of the LUT. It will not affect the performance
of FABLE. See the README for more information.
Default: O (i.e., Random LUT).

* h: The OPREF type. Default: O (i.e., LowMC).

* f: Whether to do operator fusion to save communication
rounds. After operator fusion, we cannot observe the
detailed breakdown performance, as the operations are
fused together. Default: O (i.e., no fusion).

In addition, one can also reuse 2PC subprotocols of FA-
BLE (e.g., deduplication and OPRF evaluation) as build-
ing blocks for other protocols. They are implemented under
FABLE/src/GC and built upon EzPC.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
athttps://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

