
USENIX Security ’25 Artifact Appendix: A Tale of Two Worlds, a Formal
Story of WireGuard Hybridization

Pascal Lafourcade1, Dhekra Mahmoud1, Sylvain Ruhault2 and Abdul Rahman Taleb2

1Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint-Etienne, LIMOS,
63000 Clermont-Ferrand, France

2Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI), France

A Artifact Appendix

A.1 Abstract
These artifacts accompany research paper "A Tale of Two
Worlds, a Formal Story of WireGuard Hybridization". They al-
low to reproduce all results described in this paper, concerning
symbolic evaluation of security properties and implementa-
tion of protocols related to hybridization of WireGuard. These
artifacts are composed of two folders. The first folder arti-
facts_implementation concerns our Rust implementation of
WireGuard, PQ-WireGuard⋆ and Hybrid-WireGuard. The sec-
ond folder artifacts_evaluation concerns our symbolic anal-
ysis of WireGuard (with fix for anonymity based on psk), PQ-
WireGuard, PQ-WireGuard⋆ and Hybrid-WireGuard, with the
help of TAMARIN, PROVERIF and DEEPSEC verifiers.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our artifacts are available on a permanent public repository1.
To access them, execute (MacOS may require to remove \):
record_url=$(curl -Ls -o /dev/null -w '%{url_effective}' \
https://doi.org/10.5281/zenodo.15551056)
curl -L -o artifacts-usenix-2025-wireguard-hybridization.zip \
"$record_url/files/artifacts-usenix-2025-wireguard-hybridization."\
"zip?download=1"
unzip artifacts-usenix-2025-wireguard-hybridization
cd artifacts-usenix-2025-wireguard-hybridization

A.2.3 Hardware dependencies

Our artifacts do not require any specific hardware. All results
are reproducible on a standard laptop with 12 cores of CPU
1.8 GHz and 16 Go of RAM.

1https://doi.org/10.5281/zenodo.15551056

A.2.4 Software dependencies

Our artifacts require the use of Docker Engine2. For our
tests, we used Docker Engine version 28.2.2 and we suc-
cessfully tested Docker deployment on both Linux Ubuntu
24.04.2 LTS and MacOS Sequoia 15.4. We use TAMARIN
release version 1.10.0, Maude version 3.5, PROVERIF version
2.05, DEEPSEC version 2.0.2, Python version 3.12.3, Package
sympy, GNU parallel, Clang version 18.1.3 and Rust version
1.87.0. All these dependencies are installed automatically
when building Dockerfile (subsubsection A.3.1).

A.2.5 Benchmarks

Our artifacts allow to reproduce similar benchmarks as the
one given in our paper (Table 9), to compare the efficiency
of WireGuard, PQ-WireGuard⋆ and Hybrid-WireGuard. Our
benchmarks focus on the construction of InitHello message by
Initiator, and on the processing of InitHello and construction
of RespHello by Responder. Execution time is averaged on
a chosen number of executions of these operations, that is a
parameter of the benchmark (subsubsection A.4.2).

A.3 Set-up

A.3.1 Installation

Before building Docker, it is adviced to perform a complete
cleanup of Docker environment. For this, execute (warning:
this cleanup stops and deletes all Docker containers, images,
volumes, networks):
sh run_docker_clean.sh

Then, execute:
docker buildx build --platform linux/x86_64 -t hyb-wg .

This should build the Docker image with all dependencies
(subsubsection A.2.4). Docker build takes around 30 minutes.

2https://docs.docker.com/engine/install

https://doi.org/10.5281/zenodo.15551056
https://docs.docker.com/engine/install

A.3.2 Basic Test

To check Docker image, execute:
docker run -it hyb-wg

Then inside Docker, execute:
sh run_basic_test.sh

This should launch, successively, TAMARIN, PROVERIF,
DEEPSEC verifiers and Cargo Rust, hence their respective
versions shall successively appear (subsubsection A.2.4). Fur-
thermore, this basic test launches evaluations of trace prop-
erties (resistance against unilateral and bilateral unknown
key share attacks, session uniqueness, agreement and secrecy,
including perfect forward secrecy) for PQ-WireGuard⋆ proto-
col. A set of CNFs shall be printed, as in Table 2, equal to the
ones described in Table 4 of our paper, for PQ-WireGuard⋆

protocol. This basic test shall finish in less than 2 minutes.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We propose a Rust implementation of protocols Wire-
Guard, PQ-WireGuard⋆, Hybrid-WireGuard. This is
proven by the experiment (E1) described in Section 7.2
of our paper, with results reported in Table 9 of our paper.

(C2): We propose, with TAMARIN, PROVERIF and
DEEPSEC verifiers, symbolic proofs of trace properties
(session uniqueness, resistance against UKS attacks,
message agreement and secrecy, including PFS) and
observational equivalence properties (anonymity,
strong secrecy), for WireGuard (with fix for anonymity
based on psk), PQ-WireGuard, PQ-WireGuard⋆ and
Hybrid-WireGuard. This is proven by experiments (E2),
(E3), (E4), described in Sections 4, 5, 6 of our paper,
whose results are reported in Table 4 of our paper.

A.4.2 Experiments

(E1): [Efficiency evaluation] [1 human-minutes + 10
compute-minutes]: based on Rust implementation, build
an application that mesures efficiency of construction of
InitHello message by Initiator, and processing of InitHello
and construction of RespHello message by Responder.
Preparation: Inside Docker image (subsubsec-
tion A.3.2), in folder artifacts_implementation,
file run_all.sh contains line cargo run - -b 100.
Value 100 is the chosen number for the benchmarks, as
described in subsubsection A.2.5.
Execution: Run sh run_all.sh.
Results: Printed results shall be as in Table 1, where
number of executions is the one chosen for benchmarks
(subsubsection A.2.5), message sizes correspond to Ta-
ble 8 of our paper and timings correspond to Table 9 of
our paper.

Table 1: Results for Experiment (E1).
Average time over 100 executions

WireGuard:
InitHello message size: 196 bytes
RespHello message size: 140 bytes
InitHello construction time: 0.230 ms (std = 0.061 ms)
InitHello consumption time + RespHello construction time: 0.507 ms (

std = 0.148 ms)

PQ-WireGuard*: (static kem: Classic-McEliece-460896, ephemeral kem:
ML-KEM-512)

InitHello message size: 1124 bytes
RespHello message size: 1032 bytes
InitHello construction time: 0.326 ms (std = 0.168 ms)
InitHello consumption time + RespHello construction time: 0.612 ms (

std = 0.148 ms)

Hybrid-WireGuard: (static kem: Classic-McEliece-460896, ephemeral kem
: ML-KEM-512)

InitHello message size: 1156 bytes
RespHello message size: 1064 bytes
InitHello construction time: 0.481 ms (std = 0.074 ms)
InitHello consumption time + RespHello construction time: 1.211 ms (

std = 0.178 ms)

(E2): [Trace properties evaluation] [1 human-minutes + 4
compute-hours]: based on SAPIC+ files, generate all
PROVERIF and TAMARIN files and evaluate trace prop-
erties (session uniqueness, resistance against UKS at-
tacks, message agreement and secrecy, including PFS)
for WireGuard (with fix for anonymity based on psk),
PQ-WireGuard, PQ-WireGuard⋆, Hybrid-WireGuard.
Preparation: Inside Docker image (subsubsec-
tion A.3.2), in folder artifacts_evaluation, file
run_trace_properties.sh contains all necessary
commands that allows to, sequentially, perform all
evaluations. These use PROVERIF verifier, for all
protocols, and TAMARIN verifier for WireGuard (with
fix for anonymity based on psk) and Hybrid-WireGuard.
We did not use TAMARIN verifier for PQ-WireGuard
and PQ-WireGuard⋆ as these protocols do not rely on
diffie-hellman builtin.
Execution: Run sh run_trace_properties.sh.
Results: Printed results shall be as in Table 2. These
results correspond to Table 4 of our paper. To check
TAMARIN results for WireGuard (with fix for anonymity
based on psk), execute:
cd wireguard_with_fix_psk/trace_properties/tamarin
cat *.spthy.log | grep "verified\|falsified"

All evaluated properties shall be verified. To check
TAMARIN results for Hybrid-WireGuard, execute:
cd hybrid_wireguard/trace_properties_necessary_conditions
cat *.spthy.log | grep "verified\|falsified"

All evaluated properties shall be verified. Finally,
check sufficient conditions for Hybrid:
cd hybrid_wireguard/trace_properties_sufficient_conditions
sh run_check-pv.sh

All queries shall be false except for uuks and buks
which shall be true.

WireGuard (with fix for anonymity based on psk)

bilateral: ∅
unilateral_initiator: ∅
unilateral_responder: ∅
uniqueness_initiator: ∅
uniqueness_responder: ∅
agreement_inithello: psk & (dhsisr | sic | src)
agreement_rechello: psk & (src | eic) & (dhsisr | sic | src)
agreement_confirm: psk & (sic | erc) & (dhsisr | sic | src)
secrecy_isk7: psk & (src | eic) & (dhsisr | sic | src)
secrecy_rsk7: psk & (sic | erc) & (dhsisr | sic | src)
secrecy_mul7: psk & (sic | erc) & (src | eic) & (eic | erc) & (dhsisr

| sic | src)
secrecy_isk7pfs: psk & (sic | erc) & (src | eic) & (eic | erc) & (

dhsisr | sic | src)
secrecy_rsk7pfs: psk & (sic | erc) & (src | eic) & (eic | erc) & (

dhsisr | sic | src)
secrecy_mul7pfs: psk & (sic | erc) & (src | eic) & (eic | erc) & (

dhsisr | sic | src)

PQ-WireGuard
uniqueness_initiator: ∅
bilateral: eipq | re
uniqueness_responder: ∅
unilateral_initiator: psk & (sipq | rr) & (sipq | sigr) & (eipq | re)
secrecy_isk7: psk & (srpq | ri) & (srpq | sigi)
unilateral_responder: psk & (srpq | ri) & (srpq | sigi) & (eipq | re)
agreement_inithello: psk
secrecy_rsk7: psk & (sipq | rr) & (sipq | sigr)
agreement_rechello: psk & (srpq | ri) & (srpq | sigi)
agreement_confirm: psk & (sipq | rr) & (sipq | sigr)
secrecy_isk7pfs: psk & (sipq | rr) & (sipq | sigr) & (srpq | ri) & (

srpq | sigi) & (eipq | re)
secrecy_mut7: psk & (sipq | rr) & (sipq | sigr) & (srpq | ri) & (srpq

| sigi) & (eipq | re)
secrecy_rsk7pfs: psk & (sipq | rr) & (sipq | sigr) & (srpq | ri) & (

srpq | sigi) & (eipq | re)
secrecy_mut7pfs: psk & (sipq | rr) & (sipq | sigr) & (srpq | ri) & (

srpq | sigi) & (eipq | re)

PQ-WireGuard⋆

unilateral_responder: ∅
bilateral: ∅
uniqueness_responder: ∅
uniqueness_initiator: ∅
unilateral_initiator: ∅
secrecy_isk7: psk & (srpq | ri)
agreement_confirm: psk & (sipq | rr)
agreement_rechello: psk & (srpq | ri)
secrecy_rsk7: psk & (sipq | rr)
secrecy_mut7: psk & (sipq | rr) & (srpq | ri) & (eipq | re)
agreement_inithello: psk
secrecy_isk7pfs: psk & (sipq | rr) & (srpq | ri) & (eipq | re)
secrecy_mut7pfs: psk & (sipq | rr) & (srpq | ri) & (eipq | re)
secrecy_rsk7pfs: psk & (sipq | rr) & (srpq | ri) & (eipq | re)

Hybrid-WireGuard
unilateral_responder: ∅
unilateral_initiator: ∅
bilateral: ∅
uniqueness_initiator: ∅
uniqueness_responder: ∅
secrecy_isk7: psk & (srpq | ri) & (src | eic) & (dhsisr | sic | src)
agreement_inithello: psk & (dhsisr | sic | src)
secrecy_rsk7: psk & (sipq | rr) & (sic | erc) & (dhsisr | sic | src)
agreement_rechello: psk & (srpq | ri) & (src | eic) & (dhsisr | sic |

src)
agreement_confirm: psk & (sipq | rr) & (sic | erc) & (dhsisr | sic |

src)
secrecy_mut7: psk & (sipq | rr) & (srpq | ri) & (eipq | re) & (sic |

erc) & (src | eic) & (eic | erc) & (dhsisr | sic | src)
secrecy_isk7pfs: psk & (sipq | rr) & (srpq | ri) & (eipq | re) & (sic

| erc) & (src | eic) & (eic | erc) & (dhsisr | sic | src)
secrecy_rsk7pfs: psk & (sipq | rr) & (srpq | ri) & (eipq | re) & (sic

| erc) & (src | eic) & (eic | erc) & (dhsisr | sic | src)
secrecy_mut7pfs: psk & (sipq | rr) & (srpq | ri) & (eipq | re) & (sic

| erc) & (src | eic) & (eic | erc) & (dhsisr | sic | src)

Table 2: Results for Experiment (E2).

(E3): [Anonymity evaluation] [1 human-minutes + 4
compute-hours]: evaluate all PROVERIF and DEEPSEC
files that model anonymity for WireGuard (with fix
for anonymity based on psk), PQ-WireGuard, PQ-
WireGuard⋆, Hybrid-WireGuard.
Preparation: Inside Docker image (subsubsec-
tion A.3.2), in folder artifacts_evaluation, file
run_anonymity.sh contains all necessary commands
that allows to, sequentially, evaluate all files for
anonymity for all protocols. These evaluations use
PROVERIF verifier, for all protocols, and DEEPSEC
verifier for PQ-WireGuard and PQ-WireGuard⋆. We
could not use DEEPSEC verifier for WireGuard (with
fix for anonymity based on psk) and Hybrid-WireGuard
as DEEPSEC does not handle exponentiation.
Execution: Run sh run_anonymity.sh.
Results for WireGuard (with fix for anonymity based
on psk). For PROVERIF, execute:
cd wireguard_with_fix_psk/equivalence_properties/Anonymity
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for files initiator, -Eic, -Psk,
-Src and for files responder, -Eic, -Psk, -Src and
shall be Observational equivalence is true for
files initiator, -no-reveal, -Erc-Sic and for files
responder, -no-reveal, -Erc-Sic.
Results for PQ-WireGuard. For DEEPSEC, execute:
cd pq_wireguard/equivalence_properties/Anonymity
sh run_check-dps.sh

Results shall be The two processes are not trace
equivalent for all files. For PROVERIF, execute:
cd pq_wireguard/equivalence_properties/Anonymity
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for all files.
Results for PQ-WireGuard⋆. For DEEPSEC, execute:
cd pq_wireguard_star/equivalence_properties/Anonymity
sh run_check-dps.sh

Results shall be The two processes are not trace
equivalent for all files. For PROVERIF, execute:
cd pq_wireguard_star/equivalence_properties/Anonymity
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for files initiator, -Psk, -Ri,
-Rr, -Siq, -Srq and for files responder, -Psk, -Ri,
-Srq and shall be Observational equivalence
is true for file initiator, -Eiq-Re and for file
responder, -Siq-Rr-Eiq-Re.
Results for Hybrid-WireGuard. For PROVERIF, exe-
cute:

cd hybrid_wireguard/equivalence_properties/Anonymity
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for files initiator,
-Psk, -Eic-Ri, -Eic-Srq, -Erc-Siq, -Erc-Rr,
-Sic-Rr, -Sic-Siq, -Src-Ri, -Src-Srq
and for files responder, -Psk, -Eic-Ri,
-Src-Ri, -Src-Srq, -Src-Eic and shall be
Observational equivalence is true for files
initiator, -all-dh, -all-pq, -no-reveal, -Sic
-Erc-Srq-Eiq-Ri-Re, -Sic-Src-Eic-Erc-Eiq-Re,
-Src-Eic-Siq-Eiq-Rr-Re and for files res-
ponder, -all-dh, -all-pq, -no-reveal, -Sic
-Erc-Siq-Srq-Eiq-Ri-Rr-Re, -Sic-Src-Eic-Erc
-Siq-Eiq-Rr-Re.

(E4): [Strong secrecy evaluation] [2 human-minutes + 10
compute-hours]: evaluate all PROVERIF and DEEPSEC
files that model strong secrecy for WireGuard (with
fix for anonymity based on psk), PQ-WireGuard, PQ-
WireGuard⋆, Hybrid-WireGuard.
Preparation: Inside Docker image (subsubsec-
tion A.3.2), in folder artifacts_evaluation, file
run_strong_secrecy.sh contains all necessary
commands that allows to, sequentially, perform all
evaluations. These use PROVERIF verifier, for all
protocols, and DEEPSEC verifier for PQ-WireGuard and
PQ-WireGuard⋆. We could not use DEEPSEC verifier
for WireGuard (with fix for anonymity based on psk)
and Hybrid-WireGuard as DEEPSEC does not handle
exponentiation.
Execution: Run sh run_strong_secrecy.sh.
Results for WireGuard (with fix for anonymity based
on psk). For PROVERIF, execute:
cd wireguard_with_fix_psk/equivalence_properties/Strong-

Secrecy
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for files -Psk-Src, -Psk-DH-Eic,
-Psk-Sic-Eic and shall be Observational
equivalence is true for files -Psk-Eic-Erc,
-Psk-Sic-Erc, -Sic-Src-Eic-Erc.
Results for PQ-WireGuard. For DEEPSEC, execute:
cd pq_wireguard/equivalence_properties/Strong-Secrecy
sh run_check-dps.sh

Evaluation result shall be The two processes are
not trace equivalent for all files. For PROVERIF,
execute:
cd pq_wireguard/equivalence_properties/Strong-Secrecy
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for files -Psk-Srq, -Psk-Ri-Ti
and shall be Observational equivalence is

true for files -Psk-Siq-Ri-Rr-Re-Eiq-Tr, -Psk
-Siq-Rr-Re-Ei-Tr-Ti, -reveal-all-but-Psk.
Results for PQ-WireGuard⋆. For DEEPSEC, execute:
cd pq_wireguard_star/equivalence_properties/Strong-Secrecy
sh run_check-dps.sh

Results shall be The two processes are not trace
equivalent for all files. For PROVERIF, execute:
cd pq_wireguard_star/equivalence_properties/Strong-Secrecy
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for files -Psk-Ri, -Psk-Srq
and shall be Observational equivalence is
true for files -Psk-Siq-Eiq-Rr-Re, -Siq-Srq-Eiq
-Ri-Rr-Re.
Results for Hybrid-WireGuard. For PROVERIF, exe-
cute:
cd hybrid_wireguard/equivalence_properties/Strong-Secrecy
sh run_check-pv.sh

Results shall be Observational equivalence
cannot be proved for files -Psk-DH-Eic-Ri,
-Psk-DH-Eic-Srq, -Psk-Sic-Eic-Ri, -Psk-Sic
-Eic-Srq, -Psk-Src-Ri, -Psk-Src-Srq and shall
be Observational equivalence is true for
files -all-dh, -all-pq, -no-reveal, -Sic-Src
-Eic-Erc-Siq-Srq-Eiq-Ri-Rr-Re.

A.5 Notes on Reusability
Our artifacts can be extended to benchmark and evaluate new
versions (e.g. fixes) of the protocols we evaluate in our paper.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

