ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security '25 Artifact Appendix: Game of Arrows: On the
(In-)Security of Weight Obfuscation for On-Device TEE-Shielded LLM
Partition Algorithms

Pengli Wang', Bingyou Dong?, Yifeng Cai', Zheng Zhang?, Junlin Liu', Huanran Xue?, Ye Wu?,
Yao Zhang?, and Ziqi Zhang>"

'MOE Key Lab of HCST (PKU), School of Computer Science, Peking University
2ByteDance
3University of lllinois Urbana-Champaign
* .
Corresponding Author

A Artifact Appendix

A.1 Abstract

Utilizing Trusted Execution Environments (TEEs) to pro-
tect Large Language Models (LLMs) on users’ devices is a
practical solution for model owners. To alleviate the com-
putation burden on TEEs, researchers have proposed TEE-
Shielded LLM Partition (TSLP) to offload heavy computation
layers to co-operating untrusted GPUs, while lightweight lay-
ers are shielded in TEE. TSLP utilizes various lightweight
obfuscation schemes to protect offloaded weights from var-
ious attacks meanwhile not introducing large computation
overhead. However, existing lightweight obfuscation algo-
rithms have one vital vulnerability in common: the direction
similarity of obfuscated vectors. In this paper, we propose
a novel attack, ARROWMATCH, that utilizes direction simi-
larity to recover obfuscated private weights. To achieve this,
ARROWMATCH compares direction distances between obfus-
cated model weights and public pre-trained model weights.
To mitigate this vulnerability, we propose a novel obfuscation
scheme, ARROWCLOAK, which leverages lightweight matrix-
vector multiplication to protect vector directions and private
weights. We evaluate ARROWMATCH and ARROWCLOAK
on four representative LLMs, using seven datasets, along with
five obfuscation schemes. The results show that ARROW-
MATCH can break the protection of all existing lightweight
obfuscation schemes with high accuracy (similar to no pro-
tection) and effectively recover the private weights (with over
98% accuracy). In addition, ARROWCLOAK can effectively
defend against ARROWMATCH (6.5x better than state of
the art) and protect direction information by increasing the
direction distance over 900x. We also evaluate the perfor-
mance of ARROWCLOAK on a real-world Intel SGX device
and show that ARROWCLOAK can reduce total overhead by

2.83 x compared to shield-the-whole baseline.

A.2 Description & Requirements

We have carefully read the ethics considerations discussions
in the conference call for papers, the detailed submission
instructions, and the guidelines for ethics documents. This
research focuses on the study of deep learning models and
Trusted Execution Environments (TEEs) for enhancing secure
and efficient computing. The datasets employed in this study
were curated from publicly available resources that explic-
itly permit research use. Similarly, the deep learning models
explored in this research are widely used in the academic
community. We guarantee that our artifact contains no de-
structive steps, and executing our code will cause no damage
to the host machine. Moreover, this study does not involve
experiments on live systems, human participants, or data that
could be linked to personally identifiable informa-tion (PII).
Furthermore, no terms of service were violated, and the re-
search adheres strictly to both the "Respect for Persons" and
"Respect for Law and Public Interest" principles outlined in
The Menlo Report.

A.2.1 How to access

Aligning with the open science policy, we release our code
on [1,2]. The code repository contains implementations of
ARROWMATCH and ARROWCLOAK, along with correspond-
ing scripts, across several model architectures(ViT, BERT,
and GPT). By following the instructions in the code reposi-
tory’s README file, reviewers can reproduce the attack and
defense performance in our paper.



A.2.2 Hardware dependencies

Our experiments are executed on 2 x NVIDIA RTX A6000
GPUs (48G). To ensure reproducibility, we recommend re-
viewers utilize identical or comparable GPUs for model train-
ing and evaluation.

A.2.3 Software dependencies

The code execution primarily relies on Python libraries for
machine learning and numerical computing, such as torch,
transformers, and scipy. To simplify environment configura-
tion for reviewers, we have provided setup scripts (installl.sh
and install2.sh) that automate the experimental environment
installation.

A.2.4 Benchmarks

We employed four deep learning models: ViT-Base, BERT-
Base, GPT-2, and GPT-2-XL, which are open-source models
widely used in the academic community. Our experiments
were conducted on seven datasets: CIFAR10, CIFAR100,
FOOD101, MNLI, QQP, SST-2 and QNLI, where the first
three are standard image classification datasets and the latter
four are selected from the classic GLUE benchmark.

A.3 Set-up
A.3.1 Installation

We have prepared environment configuration scripts for re-
viewers: installl.sh (for text tasks) and install2.sh (for visual
tasks). By following the instructions in the README within
our code repository, reviewers can run these scripts to config-
ure the corresponding experimental environment and activate
it for subsequent training or testing tasks.

A.3.2 Basic Test

We have prepared environment test scripts for reviewers in
the scripts2 directory: basic_testl.sh (for environment1) and
basic_test2.sh (for environment2). By following the instruc-
tions in the README within our code repository, reviewers
can run these scripts to test the corresponding experimental
environment.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ARROWMATCH can effectively recover the
lightweight obfuscation algorithms and achieve a
high attack performance. The attack performance is
averagely over 1.6 higher than the black-box baseline.
This is proven by the experiment described in section
7.2 whose results are reported in Table 3.

(C2): ARROWCLOAK can effectively protect the model
against ARROWMATCH. The attack performance is
only 1.10x higher than Shield-Whole and is over 6x
better than the best prior obfuscation algorithms. This is
proven by the experiment described in section 7.4 whose
results are reported in Table 5.

A.4.2 Experiments

(E1): [Fine-tune Phase] [10 human-minutes + 30 compute-
hour]:
Preparation: Check that the scripts exist in the scripts/
and scripts2/ directories, then locate the train private
model section under Experiments in the README.
Execution: Execute the following scripts sequentially
according to the README instructions to fine-tune ViT-
Base, BERT-Base, GPT2-Base, and GPT2-XL across
multiple datasets, with expected runtimes of 1.5h, 7.5h,
9h and 12h respectively.

./scripts2/vit_trains.sh
./scripts2/bert_trains.sh
./scripts2/gpt2_trains.sh
./scripts2/gpt2_x1_trains.sh

Results: The fine-tuned results will be stored in the
results/train_results and results/tsqp_results directories.
The performances are expected to be similar to the re-
sults in White-box column in Table 3. Please rename
the final checkpoint of the BERT and GPT?2 results to fi-
nal_checkpoint to conduct subsequent attack and defense
experiments.

(E2): [ARROWMATCH Phase] [10 human-minutes + 8
compute-hour]:
Preparation: Locate the Try ARROWMATCH section
under Experiments in the README.
Execution: Execute the following scripts sequentially
according to the README instructions to implement
ARROWMATCH on ViT-Base, BERT-Base, GPT2-Base,
and GPT2-XL across multiple datasets, with expected
runtimes of 2.5h, 1.7h, 2h and 1h respectively.

./scripts2/vit_arrowmatchs.sh
./scripts2/bert_arrowmatchs.sh
./scripts2/gpt2_arrowmatchs.sh
./scripts2/gpt2_x1_arrowmatchs.sh

Results: The ARROWMATCH results will be stored in
the results/arrowmatch_results directory. The perfor-
mances are expected to be similar to the results in cor-
responding obfuscation method’s column in Table
3. Please rename the final checkpoint of the BERT and
GPT2 results to final_checkpoint to conduct subsequent
evaluation experiments.



(E3): [ARROWCLOAK Phase] [10 human-minutes + 2 A.5 Version
compute-hour]:
Preparation: Locate the Try ARROWCLOAK section
under Experiments in the README.
Execution: Execute the following scripts sequentially
according to the README instructions to implement
ARROWCLOAK on ViT-Base, BERT-Base, GPT2-Base,

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

and GPT2-XL across multiple datasets, with expected References
runtimes of 30 minutes,30 minutes, 30 minutes and 30
minutes respectively: [1] Github link. https://github.com/qgsxltss/
Game-of-Arrows, 2025.
./scripts2/vit_arrowcloaks.sh [2] Zenodo link. https://zenodo.org/records/
./scripts2/bert_arrowcloaks.sh 15695418, 2025.

./scripts2/gpt2_arrowcloaks.sh
./scripts2/gpt2_x1_arrowcloaks.sh

Results: The ARROWCLOAK results will be stored
in the results/arrowcloak_results directory. The perfor-
mances are expected to be similar to the results in AR-
ROWCLOAK column in Table 5. Please rename the
final checkpoint of the BERT and GPT2 results to fi-
nal_checkpoint to conduct subsequent evaluation experi-
ments.

(E4): [Evaluation Phase] [10 human-minutes + 3 compute-
hour]:
Preparation: Locate the Evaluate the results section
under Experiments in the README.
Execution: Execute the following scripts sequentially
according to the README instructions to imple-
ment evaluation of ARROWMATCH and ARROWCLOAK
on ViT-Base, BERT-Base, GPT2-Base, and GPT2-XL
across multiple datasets, with expected runtimes of 45
minutes,45 minutes, 45 minutes and 45 minutes respec-
tively:

./scripts2/evaluate_models_vit.sh
./scripts2/evaluate_models_bert.sh
./scripts2/evaluate_models_gpt2.sh
./scripts2/evaluate_models_gpt2_xl.sh

Results: The evaluation results will be stored
in the evaluation_results directory. Reviewers
can locate corresponding results in the evalu-
ate_results/model_name/dataset_name directories,
where whitebox_results and blackbox_results repre-
sent the rightmost two columns of baselines in Figure
3; recover_results records the recovery performance
of the ARROWMATCH, corresponding to the our
attack column in Figure 3, while arrowcloak_results
documents ARROWCLOAK performance, aligning
with the results in column ARROWCLOAK of Figure
5.


https://secartifacts.github.io/usenixsec2025/
https://github.com/qsxltss/Game-of-Arrows
https://github.com/qsxltss/Game-of-Arrows
https://zenodo.org/records/15695418
https://zenodo.org/records/15695418

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


