ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: BLuEMan: A Stateful
Simulation-based Fuzzing Framework for Open-Source RTOS Bluetooth
Low Energy Protocol Stacks

Wei-Che Kao

National Yang Ming Chiao Tung University

Yu-Cheng Yang

National Yang Ming Chiao Tung University

A Artifact Appendix

A.1 Abstract

Bluetooth Low Energy (BLE) is widely used for low-power,
short-range communication but remains vulnerable in some
implementations. Existing fuzzing methods often lack scal-
ability and platform flexibility. To address this, we present
BLuEMan, a simulation-based fuzzing framework combining
a Real-Time Operating System (RTOS) with a software-based
physical layer simulator. BLuEMan runs actual BLE stacks
and emulates device interactions, enabling faster, scalable
testing across platforms. It achieves fuzzing speeds up to
18x and 162.3x faster than existing simulation- and platform-
based methods, respectively. It has uncovered four new CVE-
assigned vulnerabilities, offering an efficient path for BLE
security testing.

This artifact provides the source codes, scripts, and instruc-
tions to reproduce the primary evaluation results present in the
paper, namely packet sending rate, fuzzing coverage, packet
selection strategy, and vulnerability discovery.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact poses no security or privacy risks to artifact re-
viewers, testing runtime, or their users. The tools run every-
thing in a container and can be run in parallel on multiple
instances when the resources are affordable.

A.2.2 How to access

The artifacts are publicly accessible at the following platforms,
including Zenodo, GitHub, and DockerHub.

e Zenodo: https://doi.org/10.5281/zenodo.15601101
¢ GitHub: https://github.com/zoolab-org/blueman.artifact
e DockerHub: nttps://hub.docker.com/r/zoolab/blueman

Yen-Chia Chen

National Yang Ming Chiao Tung University

Chi-Yu Li

National Yang Ming Chiao Tung University

Yu-Sheng Lin
National Yang Ming Chiao Tung University

Chun-Ying Huang
National Yang Ming Chiao Tung University

A.2.3 Hardware dependencies

Evaluating the artifact requires a machine equipped with an In-
tel x86-64 compatible CPU. It is because BLuEMan depends
on BabbleSim, which currently supports only x86-64 CPU
architecture. Our experiments use a server equipped with an
Intel(R) Xeon(R) Gold 5118 CPU and 48 GB RAM, running
Debian 12 Linux OS. To minimize the cost of reproducing the
results, we omit the experiments that require special embed-
ded hardware devices or depends on other papers’ artifacts.

A.2.4 Software dependencies

We pack all the required software dependencies into a single
docker-based container. Please install a compatible docker
runtime from either the official Docker website or the docker
package that comes with a Linux distribution.

A.2.5 Benchmarks

None. No data is required by the experiments with the artifact
reported in our paper.

A.3 Set-up
A.3.1 Installation
 Step 1. Clone the repository from GitHub or download the

release files from zenodo.

git clone --recursive
< https://github.com/zoolab-org/blueman.artifact.git

e Step 2. Switch to the . /blueman.artifact folder and ensure
that the scripts have correct executable permission.
| chmod +x ./build.sh ./run.sh

* Step 3. Build the container image that is required to run the
experiments.

| ./build.sh


https://doi.org/10.5281/zenodo.15601101
https://github.com/zoolab-org/blueman.artifact
https://hub.docker.com/r/zoolab/blueman
https://docs.docker.com/engine/install/

The script creates a container image named blueman_demo.
It may take 10-60 minutes to build the image, depending
on the hardware performance and network bandwidth. Al-
ternatively, users may download our pre-built image from
the DockerHub. The commands to pull the image and apply
a correct tag for running the scripts are:

docker pull zoolab/blueman
docker tag zoolab/blueman blueman_demo

A.3.2 Basic Test

Once the container image is ready, use the ‘run.sh’ script to
run the experiments. The script comes with a few options to
choose different runtime preferences, as shown in Figure |.
We merge multiple available options into a single line to save
the spaces in the document.

Usage: ./run.sh <action> <mutator> [packet selection strategies]
< <execution duration> <output_dir>

Available actions:
- gatt_write_peripheral, gatt_write_central
- hr_peripheral, hr_central,
- sm_pairing_peripheral, sm_pairing_central
- le_credit_server, le_credit_client
- ots_peripheral, otc_central

Available mutators:
- field, afl, random

Available packet selection strategies (for field mutator only):
- FIXED_PROB_10, FIXED_PROB_25, FIXED_PROB_50, FIXED_PROB_75,
— FIXED_PROB_100, SELECTIVE_25_75, SELECTIVE_75_25
- RANDOM_PROB, MIXED_PROB

Available execution duration (in minutes):

= 1, 10, 60, 120, 360, 720, 1440,

Figure 1: The usage of the run.sh script.

Note that the run.sh script preserves outputs in the folder
specified in the last argument. Please ensure that the folder
exists in the filesystem. If multiple tests are run in parallel,
please remember to use a different directory for each test.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): BLuEMan runs much faster than other existing ap-
proaches. This is proven by the experiment (E1), where
we show that BLuEMan achieves a higher packet send-
ing rate, as presented in Section 6.1. Note that the num-
bers for SweynTooth and BTFuzz are reported from the
corresponding papers.

(C2): The field-aware mutation approach achieves higher
coverage than random mutation and AFL-only muta-
tors. This is proven by the experiment (E2), where we
show the reported coverage for each evaluated approach.
Due to the nature of randomness involved in the fuzzer
implementations, the reported coverage numbers may

differ for each invocation. Howeyver, the trends should
be aligned with the results presented in Section 6.3.

(C3): The packet selection strategy shows diverse perfor-
mance in terms of coverage exploration. This is proven
by the experiment (E3), where we show the reported
coverage for each evaluated packet selection strategy.
Due to the nature of randomness involved in the fuzzer
implementations, the reported coverage numbers may
differ for each invocation. The results should be similar
to those presented in Section 6.4.

(C4): BLuEMan has the capability to uncover new bugs
(CVE-2024-3332) in the Zephyr BLE protocol stack.
This is proven by the experiment (E4). Because all the
CVE:s are reported from different versions of Zephyr, we
choose the fastest one for the reproduction process.

A.4.2 Experiments

(E1): [Packet Rate] [30 human-minute + 1 compute-hour
+ 20GB disk]: Run BLuEMan and observe the packet
sending rates.

How to: Run the fuzzing process and check the status
message output from the tool.

Preparation: Follow the steps described in Section A.3
to create the required docker image.

Execution: Run BLuEMan using the command:

mkdir /tmp/output-folder
./run.sh ots_peripheral field FIXED_PROB_50 10

- "/tmp/output-folder"

Please ensure that /tmp/output-folder can be mounted
into the docker instance and is writable by the instance.
Results: A sample output message is shown be-
low. The total_elapse field shows the elapsed time
(in microseconds) for running the fuzzer, and the
total_packet_count shows how many packets have
been sent during the fuzzing process.

start_time: 1748974762595148, cur_time:

- 8974825155642, total_elapse: 62560494,

— round_elapse: 2676575

round 28, exec_counts 280, current corpus:

— ./output/seed//1d_00003248_0000000000000065_000045,
< attack_error_count 0, crash_count 0,

— timeout_count: 0, coverage: 3593, max coverage:

— 4223, queue size: 88, total_packet_count: 26540

(E2): [Mutation Approach] [1 human-hour + nx(1~24)
compute-hour, where n is the number of traces collected
for plotting the results + 60GB disk]: Run BLuEMan and
measure the coverage for different mutation approaches.
How to: Run the fuzzing process and collect the results
from the corresponding output folders. Please note that
in our paper, each plotted curve represents three 24-hour
runs. Users may run the experiments for a shorter time
to facilitate the reproduction process and then check the
output results.

Preparation: Follow the steps described in Section A.3
to create the required docker image.



Execution: We recommend to run BLuEMan using the
simplified command:

‘ ./auto_gen_rqg3.sh <action> <duration>

The command invokes BLuEMan, uses <action> as
the interacting app for generating testing corpora, and
runs the testing for <duration> minutes. The avail-
able <action> and <duration> are exactly the same
as those listed by the ‘run.sh’ script. Note that the
‘./auto_gen_rqg3.sh’ command utilizes 4 CPU cores in
parallel. Fuzzing is a computationally intensive process,
and execution speed may vary depending on available
computing resources. Users may selectively run com-
mands as specified in the EVALUATION_RQ3.md document
to suit their environment better.

Results: An example output from a one-minute test of
the sm_pairing_central app is shown below.

$ ./auto_gen_rg3.sh sm_pairing_central

PN

o

—

The generated PDF file is stored in the

sm_pairing_central_rq3/eval_sm pairing_central/cov/

directory on the host.

(E3): [Packet Selection Strategy] [1 human-hour + nx(1~2)

compute-hour, where n is the number of traces collected
for plotting the results + 60GB disk]: Run BLuEMan
and measure the coverage for different packet selection
strategies.

How to: Run the fuzzing process and collect the results
from the corresponding output folders. Please note that
in our paper, each plotted curve represents 2 hours of
testing. Users may run the experiments for a shorter time
to facilitate the reproduction process and then check the
output results.

Preparation: Follow the steps described in Section A.3
to create the required docker image.

Execution: We recommend to run BLuEMan using the
simplified command:

‘ ./auto_gen_rqg4.sh <action> <duration>

The command behaves similar to ‘. /auto_gen_rq3.sh’.
Similarly, users may selectively run commands as spec-
ified in the EVALUATION_RQ4.md document to suit their
environment better. Note that the ‘. /auto_gen_rq4.sh’
command utilizes 10 CPU cores in parallel.

Results: An example output from a one-minute test of

the ots_peripheral app is shown below.
$ ./auto_gen_rqg4.sh ots_peripheral 1

.
o

The generated PDF file is stored in the
ots_peripheral_rqg4/eval_ots_peripheral/cov/ direc-
tory on the host.

(E4): [Vulnerability Discovery] [30 human-minute + 0.5
compute-hour + 20GB disk]: Run BLuEMan and wait
for reported crashes due to triggered vulnerabilities.
How to: Run the fuzzing process and observe the out-
puts from the console logs and the corresponding output
folders.

Preparation: Follow the steps described in Section A.3
to create the required docker image.

Execution: Run BLuEMan using the command:

mkdir /tmp/output-folder
./run.sh gatt_write_central field FIXED_PROB_50 6(
— /tmp/output-folder

The command uses gatt_write_central as the interact-
ing app for generating testing corpora. Note that the
CVE-2024-3332 vulnerability can only be triggered us-
ing the app.

Results: An example output from a 60-minute test of
the gatt_write_central app is shown below.

$ mkdir /tmp/output-folder
$ ./run.sh gatt_write_central field FIXED_PROB_50 60
— /tmp/output-folder

¢

>
.
o

When a crash is detected, the total number of detected
crashes is shown in the crash_count field.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


