
USENIX Security ’25 Artifact Appendix: Kintsugi: Secure Hotpatching
for Code-Shadowing Real-Time Embedded Systems

Philipp Mackensen*, Christian Niesler†, Roberto Blanco‡, Lucas Davi†, Veelasha Moonsamy*

*Ruhr University Bochum, †University of Duisburg-Essen, ‡Eindhoven University of Technology/MPI-SP

A Artifact Appendix

A.1 Abstract

This artifact appendix provides the source code for the proto-
type implementation of KINTSUGI, all source codes for the
experiments described in the paper, and a Dockerfile that en-
ables the creation of an image containing all the prerequisites
necessary for successfully evaluating KINTSUGI. For each
performance experiment, we provide the measurement files
used as source for the tables and plots in the paper’s evalua-
tion. Additionally, for each of the 10 real-world CVEs and the
security experiments, we provide logs reflecting the expected
outputs. We made our artifact openly accessible and focused
on an easy-to-evaluate solution. Once the Docker image is
built, one can run each experiment using the provided scripts.

A.2 Description & Requirements

To run all artifacts, you must have an nRF52840-DK board,
which has been used to test all experiments. All experiments
were conducted (building/flashing/evaluating) on a host ma-
chine running Kubuntu 22.04.4 LTS x86/x64, featuring a 12th
Gen Intel i7-1206P (16) processor. We provide a docker file
that contains all the necessary commands to successfully build
an environment that allows to build, flash, debug and evaluate
KINTSUGI.

A.2.1 Security, privacy, and ethical concerns

To the best of our knowledge, there are no security risks asso-
ciated with running our artifacts on the host machine of any
evaluators. However, we must note that the Docker is run with
--privileged due to the need to flash the device’s firmware.

A.2.2 How to access

The artifacts are publicly available at https://doi.org/10.
5281/zenodo.15592036.

A.2.3 Hardware dependencies

Nordic NRF52840-DK development board: Required to
run the firmware and reproduce the core results.

Host machine (Linux): Used to build and flash firmware,
interface with the NRF52840-DK, collect results and
output tables / plots. A standard desktop or laptop with
≈ 8GB of RAM and ≈ 64GB of storage, with USB and
internet access is sufficient.

A.2.4 Software dependencies

We recommend using Kubuntu 22.04.4 LTS, as all experi-
ments have been successfully tested on this distribution. We
have also verified that the experiments work on a virtual ma-
chine running Ubuntu 22.04 LTS. Additionally, it is necessary
to have bash installed (which comes standard with Linux)
and Docker, which will handle the installation of all other
prerequisites.

A.2.5 Benchmarks

None.

A.3 Set-up
We provide a Dockerfile that allows to build a docker image
in which everything to perform our experimental evaluation
is gets installed.

A.3.1 Installation

To begin, install the Docker engine on Linux: https://
docs.docker.com/engine/install/. Next, download the
KINTSUGI artifact, extract it, and run the build.sh script to
set up the Docker image. Building the Docker image will take
approximately 30 minutes and it will occupy approximately
28GB of storage.

A.3.2 Basic Test

To verify that Docker can successfully build every experiment,
please run the verify.sh script. This script will check that

https://doi.org/10.5281/zenodo.15592036
https://doi.org/10.5281/zenodo.15592036
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

all experiments are built correctly; if the Docker image is
missing, it will build it as well. For each experiment, the
script will output whether the build was successful or not. It
takes approximately 8 min to verify everything.

Note, that this test does not require the existence of the
hardware as this is a pure software test.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): KINTSUGI introduces minimal performance overhead
across the hotpatching process. Validation and schedul-
ing have consistent measurement times, independent of
hotpatch sizes. This was proven by experiment (E1) and
explained in Section 6.1, "Manager" (Table 2), for hot-
patch sizes based on RapidPatch and AutoPatch. An
extended version is provided in Appendix D (Table 5),
and hotpatch sizes from KINTSUGI are discussed in Sec-
tion 6.4, with results in Appendix E (Table 6).

(C2): The performance overhead introduced by KINTSUGI
into the context switch of an RTOS is minimal. This is
proven by experiment (E2) and described in Section 6.1,
"Guard & Applicator" (Table 3).

(C3): Successively processing and applying hotpatches
scales linearly with the number of hotpatches, as demon-
strated with up to 64 hotpatches. This was proven by
experiment (E3) and is described in Section 6.2, with the
results shown in Figure 5.

(C4): The memory overhead introduced by KINTSUGI grows
predictably with the maximum hotpatch size and slot
count. The overhead ranges from an average of 3.5KB to
42KB. This is proven by experiment (E4) and described
in Section 6.3, with the shown in Figure 6.

(C5): KINTSUGI is capable of hotpatch real-world vulnera-
bilities as we demonstrated with 10 CVEs. This is proven
by experiment (E5) and is described in Section 6.4. Re-
sulting hotpatch sizes are shown in Table 4.

(C6): KINTSUGI is able to prevent tampering attacks from
an adversary before, during and after the hotpatching pro-
cess. This is proven by experiment (E6) and is described
in Section 8.

A.4.2 Experiments

We provide evaluation scripts in the directory
evaluation_scripts which are interactive and in-
clude descriptions of their working and how to correctly
use them. If a script automatically produces outputs (i.e.,
the performance experiments) they will be stored in the
folder measurement_results under their corresponding
subdirectories. We clearly mark experiments that do not
automatically produce outputs. Those experiments require
access to the UART of the board through, e.g., screen,
minicom or puTTY with a baudrate of 115200.

(E1): [micro-benchmarks.sh] [≈ 6 computer-hours]
Execute the Micro-Benchmarking experiments of the
Manager to prove (C1), measuring how each component
inside of the Manager takes to execute.
Automatic Output: Yes.
Execution: The measurement does not require user in-
teraction.
Results: Upon execution, the user will be asked to se-
lect the hotpatch sizes to measure. They can choose be-
tween RapidPatch & AutoPatch (Section 6.1) or Kintsugi
(Section 6.4). Measuring a single configuration takes ap-
proximately 100 seconds, hence why the script will stay
at "Reading UART output" for a while. All results will be
stored in micro-benchmarks/manager with raw mea-
surements being stored in measurements and the result-
ing tables in output. The measurements in the table
should be as close as possible to those claimed in (C1).

(E2): [context-switch.sh] [≈ 2 computer-minutes]
Execute the Micro-Benchmarking experiments of the
Guard & Applicator focusing on the Context-Switch of
the RTOS to prove (C2), demonstrating how much time
KINTSUGI adds to the context-switch of the RTOS.
Automatic Output: Yes.
Execution: The measurement does not require user in-
teraction.
Results: All results will be stored in
micro-benchmarks/context-switch with raw
measurements being stored in measurements and the
resulting tables in output. The measurements in the
table should be as close as possible to those claimed in
(C2).

(E3): [scalability.sh] [≈ 4 computer-hours]
Execute the Hotpatching Scalability experiments to
prove (C3), measuring KINTSUGI’s performance when
applying multiple consecutive hotpatches, demonstrating
that it grows linearly in the number of hotpatches.
Automatic Output: Yes.
Execution: The measurement does not require user in-
teraction.
Results: All results will be stored in scalability with
raw measurements being stored in measurements and
the resulting plot will be stored in output. The plot
should show linear growth in the dimension of number
of hotpatches and be as close as possible to the results
claimed in (C3).

(E4): [resource-utilization.sh] [≈ 3 computer-hours
]
Execute the Resource Utilization / Memory Overhead
experiments to prove (C4), measuring the memory over-
head introduced by KINTSUGI under different parameter
configurations of hotpatch counts and sizes.
Automatic Output: Yes.
Execution: The measurement does not require user in-
teraction.

Results: All results will be stored in
resource-utilization with raw measurements
being stored in measurements and the resulting plot
will be stored in output. The plot should show an
increase in memory overhead in both dimensions and be
as close as possible to the results claimed in (C4).

(E5): [realworld-cves.sh] [≈ 30 minutes total]
Perform the Real-World Hotpatching experiments to
prove (C5), demonstrating that KINTSUGI is capable
in hotpatching real-world CVEs.
Automatic Output: No.
Preparation: Connect to the device’s UART as de-
scribed above. Typically the access will be over ttyACM0
or ttyACM1.
Execution: Upon executing the script the user will be
asked to input a number between 1 and 10 to decide
which CVE to execute on the board.
Results: The results differ for each CVE experi-
ment. We provide details about expected outputs in
experiments/realworld_cves/README.md. This file
also reflects all the outputs that we have obtained during
our experimental evaluation.

(E6): [security.sh] [≈ 10 minutes total]
Perform the Security experiments to prove (C6), demon-
strating that KINTSUGI is resistant against adversaries
before, during and after the hotpatching process.
Automatic Output: No.
Preparation: Connect to the device’s UART as de-
scribed above. Typically the access will be over ttyACM0
or ttyACM1.
Execution: Upon executing the script the user will be
asked to input a number between 1 and 3 to decide which
of the three security experiments to run.
Results: The results differ for each security experi-
ment. We provide details about expected outputs in
experiments/security/README.md. This file also re-
flects all the outputs that we have obtained during our
experimental evaluation.

A.5 Notes on Reusability

We provide additional details on how to properly integrate
the tool into the Zephyr and FreeRTOS RTOSes in the
example_rtos_integration folder. We provide the nec-
essary files that must be adapted to the respective RTOS and
instructions on how to do so manually. In our Docker, we
require patches to modify the corresponding Git repositories.
Therefore, the git-patches for the RTOSes can potentially be
used immediately.

Integrating KINTSUGI into an RTOS should be straightfor-
ward. To do this, create a task for the Manager and modify
the context switch to check if the previous or next task is the
Manager. Additionally, call the Guard & Applicator before
restoring the execution context of the next task.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

