
USENIX Security ’25 Artifact Appendix: Scalable Collaborative zk-SNARK and Its
Application to Fully Distributed Proof Delegation

Xuanming Liu1, Zhelei Zhou1, Yinghao Wang1, Yanxin Pang3, Jinye He4,
Bingsheng Zhang1, Xiaohu Yang1, Jiaheng Zhang2

1Zhejiang University 2National University of Singapore 3Tsinghua University 4University of Virginia
{hinsliu, zl_zhou, asternight, bingsheng, yangxh}@zju.edu.cn,

jhzhang@nus.edu.sg, pangyx21@mails.tsinghua.edu.cn, qfn5bh@virginia.edu

A Artifact Appendix

A.1 Abstract
In a nutshell, this work enables many low-resource servers to
jointly execute a multiparty computation (MPC) protocol for
zk-SNARK proof generation. During the proof generation,
the servers collaboratively compute a zk-SNARK proof for
a large circuit while keeping their secret inputs—known as
the witness in zk-SNARK terminology—hidden from each
other. A key feature of our design is its scalability: each server
incurs less computational and memory overhead compared to
the original monolithic prover.

This artifact provides a proof-of-concept implementation.
It includes a Rust-based prototype, supporting collaborative
proof generation. The artifact includes implementations of col-
laborative primitives, the packed secret sharing scheme, and
the complete collaborative zk-SNARK (HyperPlonk), which
are introduced in the paper. Moreover, it provides two modes
of execution: (i) Local mode and (ii) Distributed mode, allow-
ing users to simulate the protocol either on a single machine
or in a distributed network across multiple machines. Refer
to the README.md file for detailed instructions on how to run
the artifact. It also includes scripts to benchmark performance
under various deployment configurations.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact is an academic prototype and is not suitable for
production uses. It has not undergone formal reviews.

Although it involves cryptographic protocols and peer-
to-peer communication, it does not perform any destructive
or malicious operations on developers’ machines. However,
since the artifact requires network-based interactions between
multiple parties, we recommend running it in a controlled
environment, virtual machine or sandbox to mitigate potential
risks related to system security or data privacy during testing.

A.2.2 How to access

The artifact is maintained at GitHub. A branch named
artifact-eval, containing the code and docs specifically
prepared for AE, is available at: https://github.com/
LBruyne/Scalable-Collaborative-zkSNARK/tree/
artifact-eval.

For artifact evaluation, we also provide a stable reference
to the evaluated version. The direct link to this version is
available on Zenodo: https://doi.org/10.5281/zenodo.
16722573. We recommend reviewers download the artifact
from the Zenodo link, as it includes additional documentation
and detailed instructions for usage.

A.2.3 Hardware dependencies

This artifact does not require special hardware features.
As detailed in the README.md file, the artifact supports two

modes of execution. Reviewer/User could choose the mode
that best fits their testing environment and available resources.
• Distributed execution mode (Benchmark): This mode

really runs a distributed network and supports large-scale
deployment across 16-128 virtual or physical machines to
run the collaborative proof generation. Each peer can be a
low-resource instance with only 4GB of memory. All peers
must be connected over a LAN or WAN network.

• Local execution mode (Local/Leader): (Recommended
for its simplicity) Suitable for small-scale testing, this mode
runs on a single machine. It does not require any special
hardware beyond a standard system with sufficient compu-
tational resources. For reproducibility concerns, we recom-
mend a machine with at least 1TB of RAM.

A.2.4 Software dependencies

This artifact is developed using the Rust nightly toolchain.
The following specific versions were used for development
and evaluation (but other versions may also work):
• rustup 1.27.1 (54dd3d00f 2024-04-24)

https://github.com/LBruyne/Scalable-Collaborative-zkSNARK/tree/artifact-eval
https://github.com/LBruyne/Scalable-Collaborative-zkSNARK/tree/artifact-eval
https://github.com/LBruyne/Scalable-Collaborative-zkSNARK/tree/artifact-eval
https://doi.org/10.5281/zenodo.16722573
https://doi.org/10.5281/zenodo.16722573

• cargo 1.80.0-nightly (05364cb2f 2024-05-03)
For convenience, we recommend installing the utility tool

just, which simplifies execution and scripting. It can be in-
stalled from https://github.com/casey/just.

A Linux-based operating system is recommended. All de-
velopment and testing were conducted on Ubuntu 22.04 LTS.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

First, download the artifact and install the required Rust
nightly toolchain. We also recommend installing the just
tool to simplify command execution.

Then, set up the environment with the following command:

rustup default nightly-2024-05-03 # You can use a
different nightly version, but this is the one
we used for development.

Next, build the artifact using:

cargo build --release

This command compiles the Rust code and prepares the exe-
cutable files for use.

Finally, run a basic test to ensure the artifact is set up cor-
rectly:

just run --release --example sumcheck -F leader -- --
l 4 --n 10

If you do not have just installed, you can run the following
command instead:

RUSTFLAGS="-Ctarget-cpu=native -Awarnings" cargo +
nightly run --release --example <example_name> <
args>

where <example_name> is the name of the example (e.g.,
sumcheck), and <args> are the relevant command-line argu-
ments (e.g., -F leader - -l 4 -n 10).

You may need to use the following commands to allow the
user’s shell to run the artifact properly:

ulimit -HSn 65536

This command runs a simple example of the collaborative
sumcheck with input size 210 in leader mode (refer to the
README.md file), verifying that the main components of the
artifact are functioning correctly. The output looks like this:

Start: Local Sumcheck (thread ThreadId(1))
End: Local Sumcheck (thread ThreadId(1)) ...s
Start: Collaborative Sumcheck Leader (thread

ThreadId(1))
...

End: Collaborative SumcheckProduct Leader (
thread ThreadId(1)) ...s

Comm: (...)

A.3.2 Basic Test

To test the artifact’s functionality, run:

just run --release --example hyperplonk -F local --
--l 8 --n 16

This command executes a moderate-size example of the col-
laborative HyperPlonk protocol in local mode (refer to the
README.md file), verifying that the artifact is functioning cor-
rectly. This simulates the workload of 64 = 8× l parties on a
216 = 2n-gate circuit one-party-by-one-party using a single
thread. The full network is emulated locally.

The expected output should resemble:

Start: Local HyperPlonk (thread ThreadId(1))
...
End: Local HyperPlonk (thread ThreadId(1)) ...s
Start: Local HyperPlonk++ (thread ThreadId(1))
...
End: Local HyperPlonk++ (thread ThreadId(1)) ...

s
Start: Simulate Collaborative Hyperplonk++ (

thread ThreadId(1))
...
Comm: (...)
Comm: (...)
End: Simulate Collaborative Hyperplonk++ (thread

ThreadId(1)) ...s

This command typically takes around 8 minutes to com-
plete. You can notice that according to the log file, there are
actually three instances being run: local HyperPlonk, local
HyperPlonk++, and collaborative HyperPlonk++. The run-
time duration is the runtime sum of these three instances. If it
does not run successfully, please refer to the README.md file
for troubleshooting. A common issue is insufficient memory
allocation for virtual machines—try a smaller value of n, or
use a machine with more memory.

A.4 Evaluation workflow
A.4.1 Major Claims

The protocol enables scalable collaborative zk-SNARK:
(C1): Each peer in the collaborative zk-SNARK (in this paper,

HyperPlonk) incurs only a fraction (O(1
N), where N is the

number of servers) of the time and memory overhead com-
pared to the monolithic prover. The communication is small.
This is demonstrated in experiment (E1), corresponding to
Section 5.2, 6.2, Figure 3, and Table 2, 3 of the paper.

https://github.com/casey/just

A.4.2 Experiments

First, we introduce (this can also be found in the README.md
file) that the artifact provides two modes of execution:
• Distributed execution mode: The Rust feature Bench-

mark, enabled by -F benchmark in the command, speci-
fies the protocol is run in a real distributed network. When
benchmarking using this mode (this is what we do in the
experiments), you need sufficient servers or machines con-
nected over a LAN/WAN network. In the README.md file,
we provide very detailed scripts to set up such a network
and run the benchmarks. Especially note that there are many
files and paths needed to by renamed, which are listed in
the README.md file.

• Local execution mode: However, we understand reviewers
may not have access to a distributed network or sufficient
machines. Therefore, we also provide a local execution
mode, which simulates the protocol in a single machine.
The Rust feature Local, specifies the protocol is simulated
locally. In this mode, A single thread will run each peer’s
workload one-by-one in circulation. This mode does not
require a network connection.
Next, we describe the recommended experiments:

(E1): [Collaborative vs. Monolithic Prover] [30 human-minutes
+ 24 compute-hours]: This experiment compares the perfor-
mance of collaborative HyperPlonk against the monolithic
prover on general circuits.
If you are running the benchmark in the distributed mode:

Preparation: Provision 128 virtual machines, each with 2 vCPUs and
4GB RAM, connected over a LAN or WAN network.
Additionally, set up a separate machine as a jump server
that can access all 128 VMs via SSH. Ensure the network
connectivity is functional.

Execution: Follow the instructions in the benchmark section of the
README.md file. The script we prepared will automati-
cally handle the setup and execution.
Note that to run this experiment, you only need the first
three lines in the run_all.sh file.

Results: The results for each cases will be written to the
./output directory. Use the provided Jupyter notebook
(./hack/read_data.ipynb) to convert logs into CSV
for performance comparisons. We expect to observe that
the data reflect the Figure 3 and Table 2 in the paper.
Note that in different runs, the computation time may
vary slightly due to the non-deterministic nature of the
network and system load. However, the overall linear
trends should remain consistent.

If you are running the benchmark in the local mode:
Preparation: Prepare a single machine with at least 1TB of memory.

This machine will run all the peers’ workloads in a single
thread, simulating the distributed network locally.

Execution: Run bash ./hack/bench_hyperplonk.sh. This script
will automatically run the collaborative HyperPlonk and

the monolithic prover in local mode, simulating the work-
load of 8l peers on a 2n-gate circuit using a single thread
locally.

Results: The output will be written to the output directory. The
expected results are similar to the Figure 3 and Table 2
in the paper. Remember that in local mode, the actual
computation time should be divided by N = 8l where N
is the number of peers, to obtain the average time per
peer. After this division, the results should be similar to
the distributed mode. For example, in the case of l = 4
and n = 16, the output should be similar to the following:

Start: Local HyperPlonk (thread
ThreadId(1))
...

End: Local HyperPlonk (thread
ThreadId(1)) 52.132s

Start: Local HyperPlonk++ (thread
ThreadId(1))
...

End: Local HyperPlonk++ (thread
ThreadId(1)) 65.256s

Start: Simulate Collaborative
Hyperplonk++ (thread ThreadId(1))
...

Comm: (2298526, 3666742)
Comm: (2298526, 3666742)
End: Simulate Collaborative

Hyperplonk++ (thread ThreadId(1))
190.622s

Then each peer’s average time is 190.6s
4×8 = 5.9s, while the

monolithic prover’s time is 65.3s. Therefore, the simu-
lated speedup is 65.3s

5.9s ≈ 11, which is consistent with the
claims in the paper.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

