
USENIX Security ’25 Artifact Appendix: GPUHammer: Rowhammer
Attacks on GPU Memories are Practical

Chris S. Lin†

University of Toronto
shaopenglin@cs.toronto.edu

Joyce Qu†

University of Toronto
joyce.qu@mail.utoronto.ca

Gururaj Saileshwar
University of Toronto

gururaj@cs.toronto.edu

A Artifact Appendix

A.1 Abstract

This artifact supports the paper "GPUHammer: Rowhammer
Attacks on GPU Memories are Practical", which presents the
first successful Rowhammer attack on GPUs. The paper in-
troduces GPUHammer, a framework that reverse-engineers
GDDR6 DRAM row mappings, employs GPU-specific mem-
ory access patterns to intensify hammering, and bypasses
existing mitigations. Using this approach, we demonstrate
bit flips on an NVIDIA A6000 GPU and show how they can
be exploited to tamper with machine learning models, lead-
ing to severe accuracy degradation. The artifact includes the
GPUHammer implementation and evaluation scripts used to
replicate (1) Rowhammer campaigns on A6000 GPU (Table-
1), (2) Characterization of Rowhammer bit-flips in A6000’s
GDDR6 (Figure 11, Figure 12, Table 3), and (3) Exploits on
ML models (Figure 13, Table 4).

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

This artifact triggers Rowhammer faults on GPU memory
and may induce bit-flips. Although these are contained within
GPU DRAM and the scope of evaluation is limited, evaluators
should not run this artifact on production systems or GPUs
used for other sensitive tasks.

Ensure that ECC is disabled and GPU settings are config-
ured as described. Use at your own risk.

A.2.2 How to access

The artifact is hosted on Zenodo and will become public once
the embargo on this work lifts on August 12, 2025: Zenodo
link: https://doi.org/10.5281/zenodo.15612689

A.2.3 Hardware dependencies

NVIDIA A6000 GPU with GDDR6 memory (48 GB)

†Equal contribution.

A.2.4 Software dependencies

• Rowhammer Bit Flip Characterization

- Ubuntu 20.04+

- NVIDIA CUDA Toolkit 12.3

- NVIDIA CUDA Driver ≥ 545.23.08

- g++ (≥11.4.90, C++17)

- CMake ≥ 3.26.4

- Python ≥ 3.10

• Exploit

- Anaconda 24.9.2 (Already installed on our machine)

- RAPIDS RMM (Installed by artifact setup scripts)

A.2.5 Benchmarks

ImageNet 2012 Validation Set: ILSVRC2012_img_val.tar,
required for the exploit on ML models, can be downloaded
from https://www.image-net.org/download.php.

A.3 Set-up
A.3.1 Installation

Download Artifact and Datasets:

1. Please download the artifact from the Zenodo link pro-
vided in Section A.2.2. The downloaded file should be
named gpuhammer-main.zip. Please unzip this folder.

2. Download the ImageNet validation set from ap-
pendix A.2.5 and move it inside the unzipped folder.

Setup environment:

1 cd gpuhammer-main
2 export HAMMER_ROOT=‘pwd‘
3

4 # Install Dependencies
5 bash ./run_setup.sh
6

7 # Enable rmm_dev environment and build GPUHammer
8 conda init

https://doi.org/10.5281/zenodo.15612689
https://www.image-net.org/download.php

9 source activate base
10 conda activate rmm_dev
11 cmake -S $HAMMER_ROOT/src \
12 -B $HAMMER_ROOT/src/out/build
13 cd $HAMMER_ROOT/src/out/build
14 make
15 cd $HAMMER_ROOT

Listing 1: Setup instructions

A.3.2 Basic Test

Generate a small Conflict-Set with the following command:

1 cd gpuhammer-main
2 python3 ./util/run_timing_task.py conf_set \
3 --threshold 27 \
4 --step 256 \
5 --it 15

Listing 2: Commands to generate a Conflict-Set

Expected output: The script should generate a file
CONF_SET.txt that has 80 lines. The first 8 numbers ex-
pected in the file are: 852224, 852736, 868352, 868864,
895232, 895744, 911360, 911872.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): GPUHammer induces Rowhammer bit-flips on
NVIDIA A6000 GPUs. We validate this with experi-
ment E1 in Section 7.1, whose results are reported in
Table 1.

(C2): The bit-flips on A6000 GPUs have the following char-
acteristics: (1) Rowhammer Threshold (TRH) of≈ 12.3K,
TRR sampler size of 16, and bidirectional bit-flips. This
is demonstrated by experiments E1 and E2 described in
Sections 7.3-5, whose results are reported in Figure 11,
Figure 12, and Table 3.

(C3): In a few memory massaging attempts, bit flips can be
induced in ML model weights to significantly degrade
model accuracy. This is demonstrated in experiment E3
described in Section 8.3, whose results are reported in
Figure 13 and Table 4.

A.4.2 Experiments

The detailed steps to run the experiments are provided in the
README.md file. In the following subsections, we provide
an overview of the steps to run the experiments. The following
commands automatically run all the experiments (E1, E2, E3)
which will take a total of 3.5 days:

1 cd gpuhammer-main
2 bash ./run_artifact.sh

Listing 3: Commands to run all experiments

Below, we list the steps run by the script in listing 3.
(E0): ConflictRow-Set Generation (1 day): The following

generates the Row-Set and Conflict-Set for the banks
that will be hammered in subsequent experiments. If
these have already been run, then you can skip this step.

1 cd gpuhammer-main
2 bash ./run_row_sets.sh

Listing 4: Commands to generate Conflict/Row-Sets

(E1) Systematic Hammering Campaigns: (1 day) This
experiment performs 24-sided hammering patterns on
the entire memory of the 4 different DRAM Banks (A, B,
C, D) listed in the paper. On executing this experiment,
the evaluators should see some (if not all) of the 8 flips in
Table 1 (C1), and be able to observe the characteristics
of those bit-flips in Table 3 (C2). One may see only a
subset of the flips as due to time constraints we limit the
attempts to trigger a bit flip on any given row.

Execution: To execute the 24-sided systematic hammer-
ing campaign on all four DRAM banks, run:

1 cd gpuhammer-main
2 bash run_t1_t3.sh

Listing 5: Execute systematic hammering campaign

Results: The results of the campaign in the folder
results/campaign/, generate the last column of Ta-
ble 1, and Table 3. The last column of Table 1 in t1.txt,
shows the number of bit-flips in each of the 4 DRAM
banks. Table 3 in t3.txt shows the information about
each bit-flip, such as flip-direction, location, etc. We ad-
ditionally provide the sample output of the Rowhammer
campaign in results/sample, as the tables generated
by the evaluator may not be complete due to the random
nature of Rowhammer bit-flips.

(E2) Bit-flip Characterization (5 hours): We run two ex-
periments that characterizes the Rowhammer Threshold
(TRH) and the TRR Sampler Size. On running these ex-
periments, the key results to be reproduced include: (1)
TRH of the 8 bit-flips to be 12K-16K as shown in Fig-
ure 11 (C2), and that (2) bit-flips are only observed for
17-sided patterns and beyond as per Figure 12 (C2).

Execution: To execute these experiments, run:

1 cd gpuhammer-main
2 bash run_fig11.sh
3 bash run_fig12.sh

Listing 6: Execute bit-flip characterization experiments

Results: The results of the TRH and TRR sampler size
characterizations are in folders results/fig11 and
results/fig12, respectively, and the scripts recreate
Figure 11 and Figure 12 stored as fig11.pdf and
fig12.pdf.

(E3) ML Model Exploit (1.5 days): We craft exploits to
degrade accuracy of ML models with the bit-flips. The
experiments massage the GPU memory to force place-
ment of model weights in victim locations followed by
hammering to inject bit-flips in these victim locations.
We perform this on 5 models with 50 massaging at-
tempts each. The results to be reproduced include: (1)
worst case model accuracy and Relative Accuracy Drop
(RAD) with each bit-flip for all the models similar to
Table 4 (C3), (2) Attack attempt vs RAD for bit-flip D1
(Figure 13), showing 99% RAD in < 10 attempts (C3).
Execution: To perform the exploit, run:

1 cd gpuhammer-main
2 bash run_fig13_t4.sh

Listing 7: Execute ML model exploit

Results: The results of TRH and sampler size characteri-
zation are in the folder results/fig13_t4. Table 4 and
Figure 13 are automatically generated from the result
and stored as t4.txt and fig13.pdf, respectively.

A.5 Notes on Reusability
The README provides more details including:

• Re-configuration of the code to work on other GPUs.

• Extending the hammering by modifying the hammering
parameters (e.g., aggressor pattern length, tuning the
delays for synchronization).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

