ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: How to Compare Bandwidth
Constrained Two-Party Secure Messaging Protocols:
A Quest for A More Efficient and Secure Post-Quantum Protocol

Benedikt Auerbach Yevgeniy Dodis Daniel Jost Shuichi Katsumata
PQShield New York University New York University PQShield and AIST
Rolfe Schmidt

Signal Messenger

30 May 2025 v0.0

A Artifact Appendix

A.1 Abstract

This artifact contains the code used to implement and eval-
uate the post-quantum ratcheting protocols described in the
paper. The paper presents protocols using three KEM variants
- Ratcheting KEM (RKEM), Unidirectional KEM (UniKEM),
and Bidirectional KEM (BiKEM) - and using two sampling
strategies - Opportunistic and Non-opportunistic - for a to-
tal of six protocols. The primary goal of these post-quantum
secure messaging protocols is to provide post-quantum post
compromise security (PCS), and we quantify this by mea-
suring the size of vulnerable message sets (|VulM|) that can
be recovered by an adversary after compromising one of the
parties.

While this metric is natural, it also depends fundamentally
on the underlying messaging behavior or the protocol partici-
pants. Among other issues, when the underlying messaging
behavior is random, the size of |VulM| uponcompromise will
be a random variable. Without specifying a messaging behav-
ior, these protocols are notcomparable: we can find a messag-
ing behavior where any one of the six protocols produces the
smallest |VulM|. Thus we simulate five messaging behaviors
that approximate realistic usage by users of Signal Messenger,
modeling balanced and unbalanced communication, as well
as the behaviors of primary devices (cell phones that are usu-
ally online) and linked devices (often desktops that are online
only when the user is at their desk). All of these behaviors are
implemented in this artifact.

Finally, this artifact provides a top-level program that will
perform a simulation of any of the protocols under any of the
messaging behaviors and output statistics about the distribu-
tion of sizes of the resulting |VulM|. Scripts are also provided
torun all combinations of protocols and messaging behaviors,
then use the output data to reproduce the charts presented in
the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access
The artifact is available on Zenodo at the following URL:

https://zenodo.org/records/15571277

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

This artifact requires the following software dependencies:

* Rust 1.88.0: On Unix-like systems, the rust toolchain
can be installed with rustup using the command:

curl --proto '=https’ --tlsvl.2 \\
-sSf https://sh.rustup.rs | sh
To install the specific version, you can run:
rustup install 1.88.0

rustup default 1.88.0

but be aware that this will override the default version
of Rust on your system, affecting other Rust projects.

¢ Gnuplot: On Debian Linux, run the command:

sudo apt install gnuplot



On MacOS run the command:

brew install gnuplot

A.2.5 Benchmarks

None.

A.3 Set-up

With the Rust toolchain and Gnuplot installed, the artifact
can be built by running the following command in the root
directory of the project:

cargo build --release

This will compile the Rust code and produce an executable in
the target/release directory.

A.3.1 Installation

Once compiled, no further installation is needed. The exe-
cutable can be run to give basic usage information with the
following command:

./target/release/usenix2025sims —--help

A.3.2 Basic Test

The program can be used to run simulations of different pro-
tocols under different messaging behaviors described in the
paper by executing the following command:

./target/release/usenix2025sims \\
[OPTIONS] [PROTOCOL] [BEHAVIOR] \\
[KEMTYPE] [OUTPUT] [CHUNKSIZE]

where:

e [OPTIONS]: Optional command-line options, such as
-numsteps to specify the number of time steps for the
simulation.

e [PROTOCOL]: The protocol to simulate, one of
opp-rkem, rkem, opp-uni-kem, opp-bi-kem,
uni-kem, bi-kem.

e [BEHAVIOR]: The messaging behav-
ior, one of balanced, pingpong,
random, desktop-desktop-disjoint,
primary-to-desktop,
desktop-desktop-overlap.

e [KEMTYPE]: The key encapsulation mechanism type, ei-
ther fs—-rkem to us a Forward Secret Ratcheting KEM
or non-fs-rkem for the non Forward secret RKEM vari-
ant.

e [OUTPUT]: The data to output. Use hist to output a
histogram of vulnerable message set sizes.

e [CHUNKSIZE]: The size of the chunks to process, e.g.,
small for 32B chunks, medium for 128B chunks, pr
large for 512B chunks.

For example, to simulate the Opportunistic RKEM proto-
col with 32B chunks under the primary-primary messaging
behavior for 100,000 time steps, run the following command:

./target/release/usenix2025sims \\
--numsteps 100000 opp-rkem balanced \\
fs-rkem hist small

You will then find two CSV files:

e default_bal_opprkem_hist.csv contains the fre-
quency and cumulative distributions of the sizes of the
vulnerable message sets upon compromize of parties A
and B throughout the simulation.

e default_bal_opprkem_stats.csv contains the mean,
standard deviation, and deciles of the vulnerable mes-
sage sets exposed by parties A and B throughout the
simulation.

A.4 Evaluation workflow

Scripts are provided to reproduce all experiments and charts
in the paper.

A.4.1 Major Claims

The following claims are made in the paper, and are supported
by the experiments in this artifact:

(C1): As SM protocols supporting larger bandwidth allow
larger chunks to be sent, |VulM| becomes smaller. How-
ever, since the protocol cannot become secure while one
party is offline, the benefit of allowing larger chunks
diminishes as the overlap of the parties’ online time
becomes small.

(C2): The security of an SM protocol hinges on the most
insecure party; if one party is compromised, then all mes-
sages sent during that time become vulnerable, regard-
less of the peer’s corruption state. As such, unbalanced
communications amplify the time it takes to recover
from a compromise, making the average and variance of
|VulM| larger.

(C3): A compromised party that is offline cannot recover,
and thus, the average and variance of |VulM| increase.
The primary-primary and overlapping desktop-desktop
model produce similar cumulative probability of |VulM|
as both send a similar number of messages and are online
at the same time enough to avoid blocking; For primary-
desktop we see a higher average of |VulM| because the



communication is unbalanced and the online party will
continue sending vulnerable messages while the other
party is offline.

(C4): Opportunistic sending is consistently better (i.e., small

average and variance of |VulM]|) for small chunks, sug-
gesting that wasting bandwidth is more harmful than
sampling key material in advance. However, when the
chunks become larger the benefit starts to diminish as
they behave similarly. This is because as long as the
party is offline, no recovery can happen — even if the
online party finishes sending all information required to
proceed to the next epoch secret.

(C5): Among the opportunistic protocols, Opp-RKEM and

Opp-UniKEM perform similarly, and outperform Opp-
BiKEM for all messaging behaviors except the “disjoint
desktop-desktop” model.

A.4.2 Experiments

We provide a script that simulates all analyzed protocols undr
all analyzed messaging behaviors, and produces the charts in
the paper. These charts provide views of the generated data
and support the claims above.

(E1): [Main charts] [1 human-minute + 1 compute-minute

+ 4MB disk]: execute all protocols for all messaging
behaviors and produce the charts in the paper.
Execution: From the main directory, run the following
commands:

cd charts/

./run\_tests.sh

Results: The figures from the main body of the paper
will be generated in the directory charts/figs/. All
charts generated by this script should match those in the
paper exactly.

* To assess claim Cl1, the figure

figd_primaryprimary_unikem_varchunksize.png

clearly shows that for the “primary-primary” mes-
saging behavior which simulates two online
cellphones, increasing the bandwidth limit
and using larger message chunks leads to a
clear reduction in the size of |[VulM|. The figure
fig4_disjoint_dd_uniikem_varchunksize.png,
on the other hand shows the vulnerable message set
size distributions of the same protocols, but under
the““disjoint desktop-desktop” messaging behavior
which simulates two Signal linked desktop devices
that are never online at the same time. In this
case, the advantages of sending larger messages
disappear. These results are for the UniKEM
protocol, but similar results can be seen for the
other protocols.

e To assess claim C2, consider fig-

ures fig5_unbal_uni_32.png and
fig5b_unbal_rkem_32.png which show the
distributions of |VulM| under balanced and unbal-
anced communication for the Opp-UniKEM and
Opp-RKEM protocols respectively. For unbalanced
communication we simulate situations where party
A sends 9 times more messages than party B and
vice versa. The figures show that the average and
variance of |VulM| are much larger for unbalanced
communication. While not part of claim C2, the
figures also bring out the inherent asymmetry of
the Opp-UniKEM protocol, where security is more
sensitive to a slowdown by party A than party B.
This is because this protocol requires party A to
transmit more data.

¢ To assess claim C3, consider figure
fig6a_online_overlap_katana_32.png.
Messaging behaviors that have both parties often
online at the same time - the “primary-primary"
and "“overlap desktop-desktop" models - yield
similar cumulative probability distributions. The
“primary-desktop" model, on the other hand, shows
a higher average of |VulM| because the online
primary device is often sending messages to an
offline desktop. The “disjoint desktop-desktop”
model is even more extreme, as it simulates two
parties that are never online at the same time,
slowing PCS healing further.

¢ To assess claim C4, consider figure
fig6b_opp_vs_nonopp_unikem.png which
shows cumulative probability distributions of
[VulM| for the UniKEM and Opp-UniKEM
protocol with different bandwidth limits. In the
lowest bandwidth setting - a 32 byte limit per
message - the opportunistic version of the protocol
is clearly superior. This advantage persists but
shrinks at the 128 byte limit, and disappears at the
512 byte limit.

¢ To assess claim C5, consider figure
fig7_vulnset_distributions.png which
plots cumulative probability distributions for all
three opportunistic protocols under the four main
messaging behaviors. It provides separate plots
for compromise of user A and user B, since the
opportunistic protocols have varying degrees of
asymmetry. As claimed, the Opp-RKEM and
Opp-UniKEM protocols perform similarly, and
both outperform the Opp-BiKEM protocol for
all messaging behaviors except the “disjoint
desktop-desktop" model.

(E2): [Appendix charts] [I human-minute + I compute-

minute + 6MB disk]: execute all protocols for all mes-
saging behaviors and produce the charts in the paper
and produce the charts in the appendix.



Execution: From the main directory, run the following
commands:

cd charts/

./appendix_tests.sh

Results: The figures from the appendix will be gener-
ated in the directory charts/appendix_charts/.

A.5 Notes on Reusability

While the scripts provided with this artifact are tailored to
reproduce the charts in the paper, the underlying simulation
code is designed for further experimentation. It is designed
so that it is simple for a developer to implement and evalu-
ate a new protocol or to add new messaging behaviors for
evaluation of existing protocols - or both.

Adding a new protocol: To add a new proto-
col, implement the MessagingScka trait and the
ChunkedCKAVulnerability trait for your protocol.
Optionally, you can just implement the Scka trait for your
protocol and use the RkemMessagingScka trait to get an
implementation of the MessagingScka trait.

Adding a new messaging behavior: To add a new mes-
saging behavior, implement the MessagingBehavior trait,
which has a single function that returns a list of commands to
be executed by the protocol participants at each time step.

Running simulations with a new protocol or messaging be-
havior: Once a developer has implemented a new protocol
or messaging behavior, a simulation can be run as follows:

type Cka = MyCkaProtocol;
type MessagingBehavior = MyMessagingBehavior;
let mut mb = MyMessagingBehavior::new(...);

let numsteps = 100000usize;

let hist = orchestrator
::controlled_messaging_healing_test::<
Cka,
MessagingBehavior,

> (&mut mb, numsteps)

Looking through the code in orchestrator.rs will show
other tests and measurements that can be performed, many
of which are useful for testing the correctness of a protocol
implementation. Look at the unit tests for existing protocols
for examples.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


