
USENIX Security ’25 Artifact Appendix: Comprehensive Deniability
Analysis of Signal Handshake Protocols: X3DH, PQXDH to Fully

Post-Quantum with Deniable Ring Signatures

Shuichi Katsumata
PQShield & AIST

Guilhem Niot
PQShield, Univ Rennes, CNRS, IRISA

Ida Tucker
PQShield

Thom Wiggers
PQShield

A Artifact Appendix

A.1 Abstract

The Signal protocol relies on a handshake protocol, formerly
X3DH and now PQXDH, to set up secure conversations. One
of its privacy properties, of value to Signal, is deniability, al-
lowing users to deny participation in communications. Build-
ing on Hashimoto et al.’s abstraction for Signal handshake
protocols (USENIX’25), our paper proposes a unified frame-
work to analyze the deniability properties of these protocols,
including post-quantum variants.

We further analyze post-quantum alternatives like
RingXKEM, whose deniability relies on ring signatures (RS).
By introducing a novel metric inspired by differential privacy,
we provide relaxed, pragmatic guarantees for deniability. We
also use this metric to define deniability for RS, a relaxation
of anonymity, allowing us to build an efficient RS from NIST-
standardized Falcon (and MAYO), which is not anonymous,
but is provably deniable.

We implemented in C our proposed ring signature construc-
tions and provided benchmark results demonstrating their con-
crete efficiency. Our artifact provides these implementations.

A.2 Description & Requirements

This artifact contains the experimental implementations of
the ring signatures proposed in our paper, based on the sig-
nature schemes Falcon and MAYO. In addition, it includes
the implementations of the prior ring signature works Falafl,
Calamari and Raptor for performance comparison. The im-
plementations of previous works are extracted from public
sources, with minor updates to incorporate our benchmark
code.

Our implementations of Falcon-RS and MAYO-RS consist
in extending the respective reference C implementation of
each base scheme to support signatures for rings of two users,
as proposed in our paper. They concretely allow to generate
signatures for a ring of two users, that is given one user’s

secret key and another’s public key. They also allow to verify
ring signatures given two public keys. We incorporate our
benchmark code in each folder to produce the benchmarks of
Table 3.

This section lists all the information necessary to recreate
the experimental setup used in our paper.

A.2.1 Security, privacy, and ethical concerns

There is no risk introduced by this artifact for evaluators. All
the operations are performed locally, in a typical set-up.

A.2.2 How to access

Our artifact can be permanently accessed on Zenodo at DOI
10.5281/zenodo.15571694.

A.2.3 Hardware dependencies

Part of our artifact requires AVX2 instructions support (avail-
able on Intel and AMD CPUs). Specifically the ring signatures
Calamari and Falafl in the folder prevworks/Calamari-and-
Falafl.

A.2.4 Software dependencies

For ease of reproducibility, we provide a Dockerfile specifica-
tion that will compile the code of our artifacts and produce
binaries required for our experiments.

The set-up instructions in the following section assume
the installation of podman to execute our Dockerfile. Note
that one may also use their Docker installation (in which case
they should replace the podman command with docker in the
instructions provided in the following section).

A.2.5 Benchmarks

Our artifact is used to produce the benchmarks available in
Table 3 in our paper of FalconRS and MAYORS. Additionally,
the code of previous ring signatures was used to compare the

https://doi.org/10.5281/zenodo.15571694


efficiency of our schemes to prior works in the introduction
and at the end of Section 6.

Note that more detailed benchmarks for prior works are
available in Table 8 of the full version of our paper1.

A.3 Set-up
This section includes all the installation steps required to
prepare the environment to be used for the evaluation of this
artifact.

A.3.1 Installation

1. The evaluator should first install podman by follow-
ing the instructions at https://podman.io/docs/
installation for their OS. For instance on Ubuntu,
this is done by running sudo apt-get -y install
podman.

2. Then, the evaluator should download the artifact’s code.
This can be achieved in two ways:

(a) By downloading the repository ZIP available at
DOI 10.5281/zenodo.15571694, decompressing
it, and opening a terminal in the decompressed
folder.

(b) Or using Git (needs to be installed through the OS
package manager) and by running in a terminal

git clone \
https://github.com/GuilhemN/ringsign.git

cd ringsign
git checkout 7cb6de1

3. Finally, the evaluator should compile the binaries re-
quired for the evaluation using the provided Dockerfile.
This is achieved by running the following commands

podman build -t rs-c-code .
podman create --name=rs-c-code-tmp \

rs-c-code
podman cp rs-c-code-tmp:/out ./out
podman rm rs-c-code-tmp

Alternatively, instead of copying the binaries out of the
container, the evaluator can execute them directly within
the container by running:

podman build -t rs-c-code .

In this case, all benchmark commands in the fol-
lowing sections should be of the form podman

1https://eprint.iacr.org/2025/1090.pdf

run -rm rs-c-code /out/<binary> instead of
using directly ./out/<binary>. For example, in-
stead of ./out/calamari-falafl-test_rs_iso,
one would run podman run -rm rs-c-code
/out/calamari-falafl-test_rs_iso.

A.3.2 Basic Test

The evaluator can perform a simple functionality test by run-
ning one of the binaries produced during set-up:

./out/calamari-falafl-test_rs_iso

After a few seconds, benchmarks should appear for the key
generation, signing, and verification. You can simply check
for the presence of “keygen cycles”, “signing cycles” and
“verification cycles”.

A.4 Evaluation workflow
A.4.1 Major Claims

Our paper makes the following claim:
(C1): Our ring signatures FalconRS and MAYORS outper-

form publicly-available implementations of prior ring
signatures – Raptor, Calamari and Falafl – by a factor
32 - 66× for signing, and 146 - 1025× for verification.
This is proven by the experiments (E1), (E2), (E3), (E4),
(E5) described at the end of section 6 of our paper and in
section J.3 of our full version2 whose benchmark results
are reported in Table 3 of our paper and Table 8 of our
full version.

A.4.2 Experiments

(E1): [Benchmark FalconRS] [10 human-minutes + 1
compute-second]: benchmark the performance of Falcon-
512 and FalconRS.
Execution: The benchmark can be executed by running
./out/rs-falcon-speed.
Results: The evaluator should only collect numbers in
the row “512”, corresponding to the performance of
Falcon-512 and FalconRS. They should compare the
cycle counts to the ones provided in Table 3 of our paper
(output in cycles by the script, in Megacycles in the pa-
per): Keygen corresponds to the column kg, normal Sign
corresponds to the column sd, 2-ring Sign corresponds to
the column rs_sd, normal Verify corresponds to the col-
umn vv, 2-ring Verify corresponds to the column rs_vv.
It is expected that cycle counts will differ on a different
platform, but ratios between two cycle counts should be
similar to what we obtained.
For the reference, on our test machine and as reported in
Table 3 of our paper, we measured 6.2 Megacycles for

2https://eprint.iacr.org/2025/1090.pdf

https://podman.io/docs/installation
https://podman.io/docs/installation
https://doi.org/10.5281/zenodo.15571694
https://eprint.iacr.org/2025/1090.pdf
https://eprint.iacr.org/2025/1090.pdf


the Keygen, 0.26 Megacycles for normal signing, 0.74
Megacycles for 2-ring signing, 0.02 Megacycles for nor-
mal verification, 0.04 Megacycles for 2-ring verification.

(E2): [Benchmark MAYORS] [10 human-minutes + 10
compute-second]: benchmark the performance of
MAYO 1 and 2 and the corresponding MAYORS.
Execution: The benchmark for MAYO 1 and MAY-
ORS based on MAYO 1 can be executed by running
./out/mayo_bench MAYO_1 500. The benchmark for
MAYO 2 and MAYORS based on MAYO 2 can be exe-
cuted by running ./out/mayo_bench MAYO_2 500.
Results: The evaluator should compare the results of
the commands with the values in Table 3. The output of
the first command is used to fill the row MAYO1 in the
Table 3 of our paper, the output of the second command
is used to fill the row MAYO2 in Table 3.
The two commands have an output following the same
format. They list benchmark results for different func-
tions, with the average cycles count for one execution.
We define the correspondence between the name of the
functions in the commands output, and the name of the
columns in Table 3.
Keygen corresponds to the function mayo_keypair, nor-
mal Sign corresponds to the function mayo_sign, 2-ring
Sign corresponds to the function mayo_rs_sign, normal
Verify corresponds to the function mayo_verify, 2-ring
Verify corresponds to the function mayo_rs_verify. It
is expected that cycle counts will differ on a different
platform, but ratios between two cycle counts should be
similar to what we obtained.
For the reference, on our test machine and as reported
in Table 3 of our paper, we measured the following. For
MAYO 1, we have 0.24 Megacycles for the Keygen, 0.88
Megacycles for normal signing, 1.1 Megacycles for 2-
ring signing, 0.17 Megacycles for normal verification,
0.28 Megacycles for 2-ring verification. For MAYO 2,
we have 0.65 Megacycles for the Keygen, 1.1 Mega-
cycles for normal signing, 1.5 Megacycles for 2-ring
signing, 0.09 Megacycles for normal verification, 0.16
Megacycles for 2-ring verification.

(E3): [Benchmark Raptor] [10 human-minutes + 5 compute-
second]: benchmark the ring-signature Raptor for 2 users
and verify claim (C1) that it is outperformed by Fal-
conRS and MAYORS.
Execution: The benchmark can be executed by running
./out/raptor.
Results: The command outputs kilocycle counts for
the key generation (preceeded by “bench keygen”), 2-
ring signing (preceeded by “bench sign”), and 2-ring
verification (preceeded by “bench verify”) of Raptor.
The evaluator can compare the observed performance of
signing and verification to the 2-ring signing and 2-ring
verification of FalconRS and MAYORS obtained in (E1)
and (E2) to verify the performance ratios of claim (C1).

For the reference, on our test machine and as reported in
the full version of our paper, we measured 27.1 Megacy-
cles for the Keygen, 5 Megacycles for 2-ring signing, 2
Megacycles for 2-ring verification.

(E4): [Benchmark Falafl] [10 human-minutes + 5 compute-
second]: benchmark the ring-signature Falafl for 2 users
and verify claim (C1) that it is outperformed by Fal-
conRS and MAYORS.
Execution: The benchmark can be executed by running
./out/calamari-falafl-test_rs_lat.
Results: The command outputs cycle counts for the key
generation (preceeded by “keygen cycles”), 2-ring sign-
ing (preceeded by “signing cycles”), and 2-ring verifica-
tion (preceeded by “verify cycles”) of Falafl. The evalu-
ator can compare the observed performance of signing
and verification to the 2-ring signing and 2-ring verifi-
cation of FalconRS and MAYORS obtained in (E1) and
(E2) to verify the performance ratios of claim (C1).
For the reference, on our test machine and as reported in
the full version of our paper, we measured 0.1 Megacy-
cles for the Keygen, 163 Megacycles for 2-ring signing,
76 Megacycles for 2-ring verification.

(E5): [Benchmark Calamari] [10 human-minutes + 30
compute-second]: benchmark the ring-signature Cala-
mari for 2 users and verify claim (C1) that it is outper-
formed by FalconRS and MAYORS.
Execution: The benchmark can be executed by running
./out/calamari-falafl-test_rs_iso.
Results: The command outputs follows the same format
as for Falafl. It includes the cycle counts for the key gen-
eration (preceeded by “keygen cycles”), 2-ring signing
(preceeded by “signing cycles”), and 2-ring verification
(preceeded by “verify cycles”) of Falafl. The evaluator
can compare the observed performance of signing and
verification to the 2-ring signing and 2-ring verification
of FalconRS and MAYORS obtained in (E1) and (E2) to
verify the performance ratios of claim (C1).
For the reference, on our test machine and as reported in
the full version of our paper, we measured 119.5 Mega-
cycles for the Keygen, 46581 Megacycles for 2-ring sign-
ing, 41250 Megacycles for 2-ring verification.

A.5 Notes on Reusability
The code of our ring signatures FalconRS and MAYORS can
be reused for research purposes. We included a README
in each folder RS-falcon and RS-MAYO to detail compilation
options, and location of code examples to generate keys and
ring signatures, as well as verify these signatures in C.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-



ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


