
USENIX Security ’25 Artifact Appendix: Self-interpreting Adversarial
Images

Tingwei Zhang† Collin Zhang† John X. Morris† Eugene Bagdasarian§ Vitaly Shmatikov†

†Cornell Tech §University of Massachusetts Amherst
{tingwei, collinzhang, jxm3}@cs.cornell.edu eugene@cs.umass.edu shmat@cs.cornell.edu

A Artifact Appendix

A.1 Abstract

This artifact provides the implementation and evaluation
framework for the paper Self-Interpreting Adversarial Images,
which introduces a novel class of indirect, cross-modal prompt
injection attacks on Visual Language Models (VLMs). These
attacks embed hidden meta-instructions in natural-looking
images to covertly influence model outputs toward adversary-
specified meat-objectives (e.g., sentiment, political bias, lan-
guage, or style), while maintaining plausible and coherent
responses.

The artifact includes code, data, and instructions to repro-
duce the paper’s core results on MiniGPT-4, LLaVA, and
InstructBLIP. It supports generation of adversarial image soft
prompts, evaluation under diverse meta-objectives, preserva-
tion of semantics, and robustness testing across perturbation
norms and defense strategies.

This artifact ensures reproducibility, facilitates research on
cross-modal attacks, and provides a practical framework for
evaluating VLM vulnerabilities and defenses.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The goal of this work is to support the safe deployment of
VLMs and to encourage research on defenses against cross-
modal prompt injection attacks. All datasets and models used
in this artifact are publicly available, and the artifact itself is
non-destructive and intended solely for research and evalua-
tion purposes.

A.2.2 How to access

The code is available at this URL: https://figshare.
com/articles/software/Self-interpreting_
Adversarial_Images/29219051?file=56929889

A.2.3 Hardware dependencies

The artifact evaluation requires the following hardware con-
figuration:

• CPU: We used dual Intel(R) Xeon(R) Gold 6448Y pro-
cessors with 64 cores in total, but comparable hardware
will likely suffice.

• Memory: Our machine had 256 GiB of system RAM,
however much less will suffice.

• GPU: Our experiments were run on either two NVIDIA
A40 GPUs (each with 48 GB of memory) or a single
NVIDIA A100 GPU with 80 GB of memory. Smaller
GPUs may still work, but will likely require a reduced
batch size.

• Storage: At least 40 GiB to store datasets, model check-
points, and experiment results.

A.2.4 Software dependencies

The artifact requires the following operating system and es-
sential software packages:

• Operating System: The code has been tested on Ubuntu
20.04 LTS. It is recommended to use this OS for compat-
ibility and to ensure reproducibility of the results. Other
Linux distributions may work but are not guaranteed.

• Python: Python 3.9 or higher is required. It is recom-
mended to use a virtual environment (such as Conda)
to manage dependencies. For better compatibility and
to avoid package conflicts, install the dependencies for
each model independently.

• CUDA and cuDNN: To utilize GPU acceleration, ensure
that CUDA 11.0 or higher and cuDNN are installed.

A.3 Set-up
A.3.1 Installation

Follow the Setup instructions in the README.md file of our
GitHub repository to download the model checkpoints for

https://figshare.com/articles/software/Self-interpreting_Adversarial_Images/29219051?file=56929889
https://figshare.com/articles/software/Self-interpreting_Adversarial_Images/29219051?file=56929889
https://figshare.com/articles/software/Self-interpreting_Adversarial_Images/29219051?file=56929889


each model. Additionally, set up the environment according
to the instructions provided in each model’s repository.

A.3.2 Basic test

Activate your conda environment, then run the following com-
mands:

1. Generate an image soft prompt:

python minigpt_visual_attack.py \
--data_path instruction_data/coco_1/
Sentiment/dataset.csv \
--instruction negative \
--image_file clean_images/coco_1.jpg \
--save_dir output/example

2. Perform inference on the generated image:

python -u minigpt_inference.py \
--gpu_id 0 \
--data_path instruction_data/coco_1/
Sentiment/dataset.csv \
--image_file output/example/bad_prompt.bmp \
--output_file output/example/result.jsonl

You can customize the attack by replacing the im-
age, dataset, model, and instruction parameters with your
own choices. The model’s response will be saved as
result.jsonl in the specified output directory.

A.4 Evaluation Workflow
A.4.1 Major claims

(C1): We evaluate our method on the available open-source
VLMs with meta-instructions corresponding to different
meta-objectives and show that image perturbations en-
coding meta instructions are as effective as steering
models’ outputs as explicit instructions. This corre-
sponds to Table 2 in the paper. This is proven by experi-
ment (E1).

(C2): We demonstrate that meta-instructions preserve im-
age semantics. We use several metrics, including em-
bedding and structural similarity(SSIM) and oracle LLM
evaluation, to show that target VLMs’ responses are
based on the visual content of input images. This cor-
responds to Table 3 and Table 4 in the paper. This is
proven by experiments (E2) and (E3).

(C3): We analyze stealthiness of our method and perfor-
mance under different perturbation norms, demonstrat-
ing that our method remains effective across various
perturbation constraints. This corresponds to Table 5
in the paper. This is proven by experiment (E4).

(C4): We analyze transferability of image soft prompts,
showing that the attack can be effective even when the
adversary does not know which specific VLM the vic-
tim will be applying to the adversary’s images. This

corresponds to Table 6 in the paper. This is proven by
experiment (E5).

(C5): We survey several countermeasures against our attack
based on feature distillation and anomaly detection based
on the embedding consistency of augmentations. This
corresponds to Table 7 and Table 8 in the paper. This is
proven by experiments (E6) and (E7).

A.4.2 Experiments

(E1): [Image soft prompt generation and evaluation] [2
human-hours + 200 compute-hours (can be reduced
with more or larger GPUs, or run part of the experi-
ments)]: This experiment generates the results of Table
2 in the paper.
Execution: Read script/README.md for generating
and evaluating single images. To reproduce the entire Ta-
ble 2, run all shell files in script/ with the naming for-
mat script_{instruction}_{model}, which include
the code for generating attacks, inferencing models with
image soft prompts, and baselines.
Results: The model output will be saved
to JSON files. Run the Jupyter notebook
eval_instruction_following.ipynb with the
correct paths to evaluate the attack success.

(E2): [Image semantics preservation - embedding and SSIM
similarity] [1 human-hour + 2 compute-hours]: This
experiment generates the results of Table 3 in the paper.
Execution: For embedding and SSIM similarity anal-
ysis, use the eval_content_preserving.ipynb note-
book. Update the “model_name” and “sim_metric” pa-
rameters in the first code block, and ensure all file paths
are correctly configured.
Results: The similarity metrics will be computed and
presented in the notebook. Embedding similarity results
fill columns 1, 3, and 5 of Table 3, while SSIM similarity
results fill columns 2, 4, and 6 of Table 3.

(E3): [Image semantics preservation - oracle LLM evalua-
tion] [2 human-hours]: This experiment generates the
results of Table 4 in the paper.
Execution: For columns 1, 4, and 7: Query the tar-
get VLM whether the label accurately represents the
content of the perturbed image. The script can be
found in the same script as (E1) in the inference
stage, with the commented header “Content preser-
vation evaluation”. The result will be saved in the
same directory as the image soft prompt. Run the
eval_content_preserving.ipynb notebook; the sec-
ond block will generate the result.
For columns 2, 5, and 8: These depict the metric of output
relevant to clean image. For columns 3, 6, and 9: These
depict the metric of output relevant to perturbed image.
We take the clean image/perturbed image and the target
model’s response to clean/perturbed image and use the



following query: “With yes or no, determine if the output
is relevant to the image and answers the question?”. Look
for the percentage of yes in the result.
Results: For columns 1, 4, and 7: The results will be
displayed in the notebook. For the result columns: The
result needs to be manually calculated.

(E4): [Stealthiness analysis under different perturbation
norms] [1 human-hour + 600 compute-hours (can be
reduced with more or larger GPUs, or run part of the
experiments)]: This experiment generates the results of
Table 5 in the paper.
Execution: Navigate to
script/minigpt4/minigpt4_coco_script/
and execute the constraint-specific scripts:
script_sentiment_minigpt4_16.sh (L∞ norm, ε =
16),
script_sentiment_minigpt4_l2_12.sh (L2 norm,
ε = 12),
script_sentiment_minigpt4_l2_24.sh (L2 norm,
ε = 24), and
script_sentiment_minigpt4_l2_6.sh (L2 norm,
ε = 6).
Results: Follow the same evaluation method as (E1)
using the evaluation notebook, updating the file paths
to point to the corresponding constraint-specific result
directories. The notebook evaluation will display attack
success rates across different perturbation constraints.

(E5): [Transferability analysis] [1 human-hour + 2 compute-
hours]: This experiment generates the results of Table 6
in the paper.
Execution: Execute script/minigpt4/minigpt4_coco
_script/script_sentiment_minigpt4_transfer.sh
to perform inference on different models using image
soft prompts generated by MiniGPT-4. Query GPT-4o
with the same image soft prompts to obtain additional
results.
Results: Evaluate the results using
eval_instruction_following.ipynb with cor-
rect file paths. For GPT-4o results, perform manual
calculation.

(E6): [Feature Distillation defense] [1 human-hour + 2
compute-hours]: This experiment generates the results
of Table 7 in the paper.
Execution: Execute script/minigpt4/minigpt4_coco
_script/script_sentiment_minigpt4_defense.sh
to apply Gaussian and JPEG defense during inference.
Results: Evaluate the results using
eval_instruction_following.ipynb with correct
file paths.

(E7): [Anomaly detection defense] [1 human-hour + 1.5
compute-hours]: This experiment generates the results
of Table 8 in the paper.
Execution: Run the notebook
eval_anomaly_detection.ipynb to generate aug-

mentations and compare similarity between image soft
prompt embeddings and their augmentation embeddings
with unperturbed image embeddings and their augmen-
tation embeddings.
Results: The anomaly detection results will be dis-
played in the notebook.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies

	Set-up
	Installation
	Basic test

	Evaluation Workflow
	Major claims
	Experiments

	Version


