
USENIX Security ’25 Artifact Appendix - CertTA:
Certified Robustness Made Practical for Learning-Based Traffic Analysis

Jinzhu Yan1 Zhuotao Liu1,2, # Yuyang Xie1 Shiyu Liang3 Lin Liu4 Ke Xu1,2

1 Tsinghua University 2 Zhongguancun Laboratory
3 Shanghai Jiao Tong University 4 National University of Defense Technology

A Artifact Appendix

A.1 Abstract
This appendix contains research artifacts associated with our
USENIX Security’25 paper CertTA, which presents the first
solution that provides certifiable robustness against multi-
modal adversarial attacks in traffic analysis models. We im-
plement a prototype of CertTA and extensively evaluate it
against three categories of multi-modal adversarial attacks
across six traffic analysis models and two datasets. Our exper-
imental results demonstrate that CertTA provides significantly
stronger robustness guarantees than the state-of-the-art ap-
proaches when confronting adversarial attacks.

In this appendix, we present a repository containing two
traffic datasets, three attack methodologies to generate adver-
sarial flows, six supervised traffic analysis models, CertTA
and three baseline certification methods to construct certified
traffic analysis models, three unsupervised anomaly detectors
and a novel integrated system that synergistically combines
certified traffic analysis models with anomaly detectors. In
order to facilitate the reproduction of our key experimental re-
sults and foster future research, we also provide step-by-step
instructions for running our CertTA prototype and a step-by-
step demo of key experiments in the repository.

A.2 Description & Requirements
Our artifacts are organized into the following directories:

• dataset/ contains the CICDOH20 and TIISSRC23 datasets,
including the processed json files and original PCAP files
of flow samples.

• model/ contains the implementations of six supervised
traffic analysis systems (i.e., kFP, Kitsune (supervised),
Whisper (supervised), DFNet, YaTC and TrafficFormer)
and three unsupervised anomaly detection systems (i.e.,
KMeans, Kitsune, Whisper).

• certification/ contains the implementations of CertTA’s
multi-modal smoothing mechanism and the functions for

Corresponding author.

solving CertTA’s robustness region against multi-modal
adversarial perturbations.

• attack/ contains the implementations of three multi-modal
adversarial attacks (i.e., Blanket, Amoeba, Prism).

• BARS/ contains the implementations of a baseline certifi-
cation method BARS.

• evaluation/ contains the source codes for training and eval-
uating certified traffic analysis models. Our prototype sup-
ports both CertTA and baseline certification methods (i.e.,
VRS, BARS and RS-Del) for building certified traffic anal-
ysis models.

• integration/ contains the source codes for building and
evaluating the integrated system of anomaly detectors and
certified traffic analysis models.

A.2.1 Security, Privacy, and Ethical Concerns

Our artifacts are non-destructive, and there is no security or
privacy risk when running the CertTA prototype. The datasets
used in our evaluations are publicly available, and all third-
party artifacts are based on open-source implementations. We
strictly followed all terms of use, and no private or sensitive
data were accessed or disclosed.

A.2.2 How to Access

Our repository is archived on Zenodo1, with a GitHub2 mirror
for ease of access. The research artifacts, including the source
code of our CertTA prototype and the experimental artifacts
(e.g., the datasets, the detailed implementations of traffic anal-
ysis models, adversarial attack methodologies and baseline
approaches), can be accessed via these public repositories
under an open-source license.

A.2.3 Hardware Dependencies

As a reference, our experiments are conducted on a Super-
micro SYS-740GP-TNRT server with two Intel(R) Xeon(R)
Gold 6348 CPUs (2 × 28 cores), 512GB RAM, one NVIDIA

1Available at https://doi.org/10.5281/zenodo.15580292
2Available at https://github.com/InspiringGroup-Lab/CertTA

https://github.com/InspiringGroup-Lab/CertTA/tree/main/dataset
https://github.com/InspiringGroup-Lab/CertTA/tree/main/model
https://github.com/InspiringGroup-Lab/CertTA/tree/main/certification
https://github.com/InspiringGroup-Lab/CertTA/tree/main/attack
https://github.com/InspiringGroup-Lab/CertTA/tree/main/BARS
https://github.com/InspiringGroup-Lab/CertTA/tree/main/evaluation
https://github.com/InspiringGroup-Lab/CertTA/tree/main/integration

A100 GPU and two NVIDIA GeForce RTX 4090 GPUs.
Since we have not verified the compatibility of our artifacts
in a CPU-only hardware environment, we recommend con-
ducting experiments on a machine equipped with GPUs.

A.2.4 Software Dependencies

As a reference, our artifacts have been successfully tested in
Ubuntu 20.04 server with Python 3.8.18. Based on the Ana-
conda distribution, we provide step-by-step instructions about
software environment setup in our repository. All required
Python packages are listed in the “environment.yml” file.

A.2.5 Benchmarks

The CICDOH20 and TIISSRC23 traffic datasets, the pre-
trained checkpoints of traffic analysis models YaTC and Traf-
ficFormer are required by the experiments with our artifacts.
These datasets and model checkpoints are completely pro-
vided in our Zenodo repository, while the PCAP files of the
two traffic datasets and the pre-trained checkpoint of the Traf-
ficFormer model are not provided in our Github repository
due to the repository size limit.

A.3 Set-up
A.3.1 Installation

1. Download the zip file of our Zenodo repository and unzip
the complete artifacts.

2. Ensure that you have conda installed on your system. If
you do not have conda, you can install it as part of the
Anaconda distribution or Miniconda.

3. Open a terminal or command prompt.
4. Create a new conda environment with the name of your

choice (e.g., CertTA) and install all the required packages
listed in the “environment.yml” file:

conda create -n CertTA -f environment.yml

5. Once the environment is created, activate it by running:

conda activate CertTA

6. Switch to the root directory of the repository (i.e., the
CertTA_public directory).

A.3.2 Basic Test

To check that all required software components are used and
functioning fine, run the command:

python evaluation/setup_check.py

The evaluation environment is properly initialized if “Setup
Successful!” appears at the end of the output.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): CertTA provides much stronger robustness guarantees
against multi-modal adversarial attacks than the SOTA
approaches (i.e., VRS, BARS and RS-Del), while im-
posing very minimal performance reductions on clean
traffic. This is proven by the experiment (E1) described
in Section 5.2 whose results are illustrated in Table 5,
Figure 6 and Figure 7.

(C2): The synergistic integration between CertTA and
anomaly detection systems can create a fundamental
dilemma for the attacker, thereby achieving consistently
high Defense Success Rate against adversarial attacks
with varying attack intensities. This is proven by the
experiment (E2) described in Section 5.3 whose results
are illustrated in Figure 8.

A.4.2 Experiments

Running all the experiments in our paper - involving two
traffic datasets, three adversarial attack methodologies, six
supervised traffic analysis systems, CertTA and three baseline
certification methods, three unsupervised anomaly detectors
and an integrated system - might take several weeks to com-
plete. To facilitate a quick verification of the major claims
made in our paper, we provide a step-by-step demo in the
repository to reproduce key experiments. In this demo, we
use the CICDOH20 dataset and the YaTC model to build
CertTA-certified/baseline traffic analysis models and repro-
duce key experimental results based on these models.
(E1): [Certified Robustness against Adversarial Attacks]

[4 human-hours + 6 compute-hours]: Using the CIC-
DOH20 dataset and the YaTC model, we reproduce key
experimental results in Table 5 and Figure 6 to verify the
major claim (C1).
Step 1: Train CertTA-certified/baseline traffic analysis
models. The trained model checkpoints and training
logs will be saved. To save time, we provide pre-saved
model checkpoints to proceed with subsequent experi-
ment steps.
Step 2: Evaluate the performance on clean traffic.
We evaluate the classification performance of CertTA-
certified/baseline traffic analysis models on clean traffic.
The accuracy/precision/recall/F1-score of each traffic
class and their macro aggregation will be saved, which
can be compared with the results in Table 5.
Step 3: Measure the robustness region of the CertTA-
certified traffic analysis model. Based on the robustness
region offered by CertTA-certified traffic analysis model,
we plot the CDF curves of certified accuracy under dif-
ferent robustness radius. The plotted figure will be saved,
which can be compared with the sub-figure on the left-
most column of Figure 6.

https://github.com/InspiringGroup-Lab/CertTA/blob/main/environment.yml
https://doi.org/10.5281/zenodo.15580292
https://github.com/InspiringGroup-Lab/CertTA
https://doi.org/10.5281/zenodo.15580292
https://github.com/InspiringGroup-Lab/CertTA/blob/main/environment.yml
https://github.com/InspiringGroup-Lab/CertTA/blob/main/Demo.md

Step 4: Generate adversarial flows. We train the Blan-
ket, Amoeba and Prism attack models to generate ad-
versarial flows. The trained model checkpoints, training
logs and generated adversarial flows will be saved. To
save time, we provide pre-saved datasets of these ad-
versarial flows to proceed with subsequent experiment
steps.
Step 5: Evaluate the certified accuracy against adversar-
ial flows. We evaluate the certified accuracy of CertTA-
certified/baseline traffic analysis models against adver-
sarial flows. The certified accuracy of each traffic class
and their macro aggregation will be saved, which can be
compared with the results in the right-side three columns
of Figure 6.
Step 6: Verify the reproduced experimental results.

(E2): [Integration with Anomaly Detection] [3 human-hours
+ 5 compute-hours]: Using the CICDOH20 dataset and
the YaTC model, we reproduce key experimental results
in Figure 8 to verify the major claim (C2).
Step 1: Generate adversarial flows of different intensi-
ties. We train the Blanket, Amoeba and Prism attack
models to generate adversarial flows with different lev-
els of attack intensities. The trained model checkpoints,
training logs and generated adversarial flows will be
saved. To save time, we provide pre-saved datasets of
these adversarial flows to proceed with subsequent ex-
periment steps.
Step 2: Evaluate the non-certified traffic analysis model
against adversarial flows. The accuracy of each traffic
class and their macro aggregation will be saved, which
can be compared with the results in the left two columns
of Figure 8.
Step 3: Train the anomaly detector. We train the Kit-
sune model for anomaly detection against adversarial
flows. The trained model checkpoint and training log
will be saved.
Step 4: Evaluate the standalone anomaly detector
against adversarial flows. The False Positive Rate on
clean traffic and the True Positive Rate on adversarial
flows will be saved, which can be compared with the
results in the middle two columns of Figure 8.
Step 5: Evaluate the standalone certified traffic analysis
model against adversarial flows. The accuracy of each
traffic class and their macro aggregation will be saved,
which can be compared with the results in the right two
columns of Figure 8.
Step 6: Evaluate the integrated system against adversar-
ial flows. The Defense Success Rate on each traffic class
and their macro aggregation will be saved, which can
be compared with the results in the middle two columns
and right two columns of Figure 8.
Step 7: Verify the reproduced experimental results.

The commands to be executed in each experiment step and
the organization of the experimental results are detailed in

the Demo.md file. All intermediate model checkpoints and
experimental results are saved to enable easy comparisons
with the results found in our paper. Beyond this demo, you can
also follow the aforementioned experiment steps to reproduce
results using other datasets and models.

A.5 Notes on Reusability
Our artifacts integrate two traffic datasets, six traffic analy-
sis models and three anomaly detectors using different flow
representations (e.g., flow statistics, raw flow sequences and
raw bytes) and architectures (e.g., traditional machine learn-
ing based, deep learning based and Transformer based), three
categories of adversarial attacks (e.g., Generative Adversarial
Network based, Reinforcement Learning based and explicit
modeling based) and four robustness certification methods.
Based on the step-by-step instructions in our repository, these
artifacts can be reused to facilitate future studies and deploy-
ment of traffic analysis systems.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://github.com/InspiringGroup-Lab/CertTA/blob/main/Demo.md
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

