ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Exploring and Exploiting the
Resource Isolation Attack Surface of WebAssembly Containers

Zhaofeng Yu', Dongyang Zhan'!; Lin Ye!, Haining Yu!, Hongli Zhang', Zhihong Tian?
"Harbin Institute of Technology, 2Guangzhou University
yuzhaofengl@stu.hit.edu.cn
{zhandy, hityelin, yuhaining, zhanghongli}@hit.edu.cn
tianzhihonglgzhu.edu.cn

A Artifact Appendix

A.1 Abstract

This artifact provides a comprehensive research toolset for
analyzing WebAssembly runtimes and evaluating the resource
exhaustion exploits proposed in our paper. It consists of two
major components: a static analysis framework and a suite of
automated exploit scripts.

The static analysis framework performs static analysis of
WASI/WASIX interfaces to identify external API calls and
potential syscall invocations, along with their relevant param-
eters. To support reproducibility, we provide both a Docker
image with all dependencies pre-installed and standalone au-
tomation scripts for non-containerized environments.

The exploit part of the artifact demonstrates how crafted
WebAssembly instances can exhaust host resources via legiti-
mate runtime interfaces. It includes test cases and automation
scripts to reproduce our evaluation results and measure the
impact of each exploit instruction.

A README file is provided, which contains detailed setup
and usage instructions. This artifact is released for academic
use only. Any malicious application is strictly prohibited.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The static analysis component of our artifact does not pose any
security risks. During exploit evaluation, some test cases may
temporarily affect system performance, such as I/O through-
put and network bandwidth. For network-related experiments,
users need to specify an IP and port, and run tools like
ncat and iperf3 on a separate host to receive traffic (see
README for details). Our artifact does not modify or collect
any user data. It does not perform any destructive actions.

* Corresponding author: Dongyang Zhan (Email: zhandy @hit.edu.cn)

A.2.2 How to access

Our artifact is publicly available on Zenodo. Please
visit the following DOI to access the latest version:
https://doi.org/10.5281/zenodo.16594863.

The archive contains all necessary files, including analy-
sis tools, exploit scripts, Docker images, and documentation.
Please refer to the included README file for detailed setup and
usage instructions.

A.2.3 Hardware dependencies

The artifact does not require any specialized hardware. How-
ever, we recommend a system with at least 16 GB of RAM
(ideally 32GB) and a reasonably powerful CPU to ensure
smooth analysis and reasonable execution time.

A.2.4 Software dependencies

To begin with, we strongly recommend reading the provided
README file, which offers detailed instructions for environ-
ment setup and dependency installation. As an initial step,
please ensure that p7zip-full is installed in order to extract
the artifact package.

If using the Docker image, the analysis framework requires
only Docker to be installed. However, for users who prefer to
run the framework locally without Docker, it is necessary to
manually install LLVM (version 17.x) and a nightly version
of Rust that is compatible with the selected LLVM version.
In addition, several other system dependencies are required,
including curl, cmake, gcc, g++, python3, python3-dev,
z1liblg, make, binutils, bzip2, zip, xz-utils, and git.

For evaluating the exploits, a separate set of dependen-
cies must be installed. These include python3, python3-pip,
dstat, ent, fio, iperf3, and sysstat. Additionally, the
Python package pandas is required and can be installed using
pip.

https://doi.org/10.5281/zenodo.16594863

A.2.5 Benchmarks

None

A.3 Set-up
A.3.1 Installation

For cases where the provided Docker image is used to test the
static analysis framework, please follow the steps described
in Listing 1.

To evaluate the exploit strategies proposed in our paper,
please follow the steps described in Listing 3 to set up the
environment.

Step 1: Install Docker

Step 2: Unpack the archive to retrieve our
provided Docker image.

sudo apt update

sudo apt install p7zip-full

7z x artifact.image.7z.001

Step 3: Load the Docker image

sudo docker load -1 artifact.image

Step 1: Install dependencies

sudo apt install python3 python3-pip

pip install pandas

curl https://wasmtime.dev/install.sh -sSf | bash

curl https://get.wasmer.io -sSfL | sh

sudo apt install dstat ent fio iperf3 sysstat

Step 2: Unpack the archive to retrieve our
artifact.

sudo apt update

sudo apt install p7zip-full

7z x wasm_artifacts.7z.001

Listing 1: Environment setup for evaluating the static analysis
framework with Docker.

For cases where the static analysis framework is tested
in a non-containerized environment, please follow the steps
described in Listing 2.

Listing 3: Environment setup for evaluating the proposed
exploit strategies.

A.3.2 Basic Test

To test our static analysis framework, please follow the in-
structions described in Listing 4 to run it.

Step 1:
sudo apt --yes update && sudo apt install --yes
cmake gcc g++ \
python3 python3-dev zliblg make
binutils bzip2 \
zip xz-utils git
git clone https://github.com/1llvm/llvm-project.git
mkdir ./build && cd ./build/
cmake -S ../llvm-project/llvm/ -B ./ -G "Unix_,
Makefiles" \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_PROJECTS="clang; clang-
tools-extra;lldb;11d" \
~-DLLVM_ENABLE_RUNTIMES="1ibcxx;
libcxxabi;compiler-rt; libunwind" \

Install dependencies

make -j 8

sudo make install

sudo apt install --yes curl

curl --proto ’'=https’ --tlsvl.2 -sSf https://sh.
rustup.rs | sh

rustup toolchain install nightly-2024-02-01

rustup default nightly-2024-02-01-x86_64-unknown-
linux-gnu

rustup component add rust-src --toolchain nightly
-2024-02-01-x86_64-unknown-linux-gnu

Step 2: Unpack the archive to retrieve our
artifact.

sudo apt update

sudo apt install p7zip-full

7z x wasm_artifacts.7z.001

After loading the provided Docker image, you can

run the container to automatically demonstrate

the workflow of the static analysis framew
sudo docker run -it --rm artifacts:latest

After inst

alling the dependenc

the provided artifact, navigate to the directory
and run the automated script.

cd wasm_artifacts

./start.sh

Listing 4: Running the static analysis framework via Docker
or automated script.

To evaluate the exploit strategies proposed in our paper,
please follow the instructions described in Listing 5.

After installing the dependencies and extracting

the vided artifact, na te to the directory

’
and run the automated script.

cd wasm_artifacts/exploit

./exploit.sh

Note: If you need to evaluate network-related
strategies, each time you run the script (

including the first), you must provide two
parameters. You can run ncat and iperf3 on

another machine and then supply their listening

I esses and ports to the script.

./exploit.sh <send_traffic_ip:port> <iperf_server_ip:
port>

Listing 2: Environment setup for evaluating the static analysis
framework without Docker.

Listing 5: Evaluating our proposed exploit strategies via
automated script.

A.4 Evaluation workflow
A.4.1 Major Claims

Our artifact consists of two components: the static analysis

framework and our proposed exploit strategies. To evaluate

the artifact, one can examine the outputs produced by both
components, as described below.

(C1): In experiment (El), the static analysis framework is ex-
ecuted using the provided Docker image (recommended)
or the automated script, producing a JSON file that con-
tains key external APIs or syscalls involved in the run-
time interfaces, along with some possible parameters.
Table 1 in Section 3.4 of our paper illustrates part of the
contents of this JSON file.

(C2): In experiment (E2), the provided automated script is
used to measure the system’s baseline performance
and evaluate the impact of each exploit strategy on
system performance. The output results are saved in
wasm_artifacts/exploit/data/result. In
the WebAssembly container, our strategies can degrade
system performance in various aspects, such as I/O, CPU
usage, and network bandwidth. Several tables in Section
5 of our paper present these results.

A.4.2 Experiments

(E1): [Run the static analysis framework] [About 1 hour.]:
By running our static analysis framework via the Docker
image or the automated script, the framework will au-
tomatically build the project, extract the IR, perform
analysis, and finally output a JSON file containing the
key external APIs and syscalls involved in the runtime
interfaces, along with some possible parameters. Note
that this process takes a considerable amount of time.
Therefore, we have included a GIF in the README to
demonstrate the procedure.

Preparation: If you want to run the static analysis
framework using the Docker image (recommended), fol-
low the steps in Listing 1. To run it using the automated
script, follow the installation steps in Listing 2.
Execution: The basic commands are listed in Listing 4,
which by default analyze the Wasmtime runtime.
The source code of the runtime is already included
in both the Docker image and the artifact, so no
additional download is required. If you wish to
analyze Wasmer instead, an extra parameter must
be provided when running the container or script:
/wasm_artifacts/wasm_runtimes/wasmer/
for the container, and . /wasm_runtimes/wasmer/
for the script. Note that analyzing Wasmer can take
significantly more than one hour due to its large
codebase. It is also recommended to ensure that the
system has more than 30GB of available memory to
avoid analysis failures due to memory exhaustion.

Results: After the Docker container or automated script
finishes running, the contents of the JSON file will be
displayed using cat. In the container, the JSON file
is saved at /wasm_artifacts/result, while the
script saves it to . /wasm_artifacts/result.
(E2): [Optional Name] [About 4 hours]: By running the pro-
vided automated script multiple times, the system base-
line performance and the system performance during the
execution of the exploit strategies can be collected. We
have also included a GIF in the README to demon-
strate the procedure.
Preparation: 7o evaluate the impact of the exploit
strategies, first install the dependencies by following the
instructions in Listing 3.
Execution: The basic commands are listed in Listing 5,
which will first measure the system baseline performance
and then evaluate the impact of the first exploit strategy.
By running the script multiple times, you can continu-
ously evaluate the next exploit strategy.
Results: When the script is run but produces no
output, it means all exploit strategies have been
evaluated. All collected data can be found in the
wasm_artifacts/exploit/data/result di-
rectory.

A.5 Notes on Reusability

All scripts and source code for our static analysis framework
and exploit tools are included in the artifact. If needed, new
features can be added by simply modifying the scripts and
source code. Additionally, the analysis-related source code
can be directly integrated into your own project and used by
calling the provided class interfaces, requiring only a proper
LLVM installation.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

