
USENIX Security ’25 Artifact Appendix: EKC: A Portable and Extensible
Kernel Compartment for De-Privileging Commodity OS

Jiaqin Yan*†, Qiujiang Chen†, Shuai Zhou†, Yuke Peng†, Guoxing Chen*, Yinqian Zhang†

*Shanghai Jiao Tong University, †Southern University of Science and Technology
yan2364728692@gmail.com, {12012211, zhous2021, pengyk}@mail.sustech.edu.cn,

guoxingchen@sjtu.edu.cn, yinqianz@acm.org

A Artifact Appendix

A.1 Abstract
The artifact includes the following components:

• RustEKC_src.zip: Contains the complete source code
and documentation for RustEKC, consistent with the
open-source repository. It enables users to examine the
EKC’s internal design, modify the implementation, and
recompile it for integration into custom applications.

• payload_src.zip: Provides the source code of
the supported OS kernels—rCore, FreeRTOS, and
TinyLinux—demonstrating how each integrates with
EKC. Users can freely inspect, modify, and rebuild these
kernels as needed.

• RustEKC_artifact.zip: Offers pre-compiled binaries
for execution on the QEMU platform, allowing users
to evaluate RustEKC without setting up a full build en-
vironment. All binaries are compiled from the sources
in RustEKC_src.zip and payload_src.zip, and are
intended for basic testing.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The execution of this artifact does not pose any risks to the
evaluator’s system security, data privacy, or ethical consid-
erations. Once the environment is set up and installed, the
artifact can be executed and tested without requiring Internet
access.

A.2.2 How to access

This submission complies with the Open Science guidelines
of USENIX Security ’25. All relevant artifacts have been
publicly released on Zenodo:

doi.org/10.5281/zenodo.15534623

Additionally, the latest working copy of the artifact for is
maintained in an open-source repository. For artifact evalua-
tion, a stable release is available at:

github.com/EmbeddedKC/RustEKC/releases/tag/AEC

Future updates and bug fixes will be published through this
repository.

A.2.3 Hardware dependencies

The artifact supports both simulation and hardware-based
testing.

Simulation: An x86 host machine is sufficient.
Hardware (board) testing: An x86 host is required, along

with one or more of the following development boards:

• Raspberry Pi 4B (for the AArch64 instruction set)

• Allwinner Nezha D1-H (for the RISC-V instruction set)

In addition, UART and USB cables are needed for FEL
flashing and serial debugging.

A.2.4 Software dependencies

The following software tools are required:

• QEMU 6.2.0 — for emulated testing.

• xfel — for deploying EKC on the Allwinner D1 board.

• Pi4 flashing utility — for Raspberry Pi 4B support.

• PuTTY — for serial port debugging.

The following toolchains are required:

• Rust nightly-2023-06-25

• gcc-arm-none-linux-gnueabi 2021-07

• gcc-riscv64gc-unknown-none-elf 10.2.1

• gcc-aarch64-none-elf 4.3.2

A.2.5 Benchmarks

All test examples and benchmarks are included in the artifact.

A.3 Set-up

A.3.1 Installation

To run the artifact in an emulator, QEMU must be installed.
The following shell script provides a quick installation method
on Ubuntu 22.04:

sudo apt update
sudo apt install -y build -essential \

make git pkg-config libglib2.0-dev \
zlib1g -dev libpixman -1-dev \
ninja -build python3 python3 -pip \
libncurses5 -dev libspice -server -dev \
libncursesw5 -dev libspice -protocol -dev \
libcap -dev libvirglrenderer -dev \
libsdl2 -dev libgtk -3-dev libattr1 -dev

git clone https://gitlab.com/qemu -project/
qemu.git

cd qemu
git checkout v6.2.0

./configure --target -list=arm-softmmu ,\
aarch64 -softmmu ,riscv64 -softmmu

make -j$(nproc)
sudo make install

To compile the artifact, you must install Rust and the re-
quired cross-compilation toolchains. Follow these steps:

Install Rust nightly-2023-06-251.
Install gcc-arm-none-linux-gnueabi 4.3.22.
Install riscv64gc-unknown-none-elf-gcc 10.2.03.
Install aarch64-none-elf-gcc 2021-074.
Install xfel5 to run EKC on the Allwinner D1H board.
A custom SD card flashing tool for Raspberry Pi 4B is

included in the artifact package.
Finally, download and extract RustEKC_src.zip and

RustEKC_artifact.zip from Zenodo.

A.3.2 Basic Test

Open the RustEKC_artifact directory to access a set of
pre-compiled binary files that can be executed directly us-
ing QEMU. To run a demo, navigate to the corresponding
subdirectory and run one of the following commands:

1https://www.rust-lang.org/tools/install
2https://ftp.gnu.org/gnu/gcc/gcc-4.3.2/
3https://github.com/riscv-collab/riscv-gnu-toolchain
4https://developer.arm.com/downloads/-/gnu-a/10-3-2021-07
5https://github.com/xboot/xfel

make INFO=1 % Verbose output
or
make INFO=0 % Minimal output

This will produce QEMU output, either with full logging
(INFO=1) or minimal output (INFO=0). Refer to the expected
output described in the Explanation.md file within each
demo folder. This basic test only requires QEMU to be in-
stalled on the host machine.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): EKC can be deployed across multiple OS kernels and
instruction set architectures (ISAs). This is proven by the
experiment (E1) and (E2) described in section 3.1 and
Table 4.

(C2): EKC can protect user data across various application
scenarios. This is proven by the experiment (E1) and
(E2) described in section 3.4.

(C3): EKC has been successfully deployed on multiple de-
velopment boards. This is proven by the experiment (E1)
and (E2) described in section 3.1 and Table 4.

A.4.2 Experiments

(E1): [Compile EKC for different platforms] [1 human-
hour]:
How to: Modify the configuration in the source code
and compile the binaries for execution in QEMU.
Preparation: Open RustEKC_src and edit the
Makefile. Adjust the following parameters: BOARD spec-
ifies the target platform, selectable from codes/arch.
The TARGET variable specifies the Rust compilation
target. Typical values include:

• arm32-none-linux-gnueabi
• aarch64-unknown-none
• riscv64gc-unknown-none-elf

Execution: For each configuration, run make env fol-
lowed by make all to compile EKC for the selected
platform. Use make run to launch EKC under QEMU.
Results: EKC will initialize on the selected platform
and terminate with a panic, as expected, due to the ab-
sence of a payload.

(E2): [Run EKC with different payloads in QEMU] [1
human-hour]:
Preparation: Compile each payload following the in-
structions in its source directory. In the Makefile, assign
the compiled binary to the PAYLOAD variable. Configure
BOARD and TARGET accordingly.
Execution: After updating the configuration, run make
env and make all, then use make run to launch EKC
with the selected payload on QEMU.

Results: EKC will execute with the specified pay-
loads. The output should match the results observed
in RustEKC_artifact.

(E3): [Run EKC with payloads on development boards] [2
human-hours]:
Preparation: Take Raspberry Pi 4B as an example. Re-
compile both EKC and the payload for the AArch64
Raspberry Pi platform to produce binaries. Use the pro-
vided flash tool at tools/pi-fel-tool to write the bi-
naries to an SD card, then insert it into the board.
Execution: Connect the board to your computer via a
serial cable and open a terminal using PuTTY. Power on
the board to observe its output in the PuTTY console.
Results: The output should be consistent with the
QEMU results observed in experiment (E2).

A.5 Notes on Reusability
You may deploy your own payload with EKC on a specific
platform. To integrate EKC into a custom operating system
kernel, follow these steps:

1. Modify the linker script (typically linker.ld) to set
the entry point to the EKC jump address, which is de-
fined in config.rs.

2. Include the EKC API library, available from the
GitHub:

• For Rust projects, add the mmi dependency to
Cargo.toml.

• For C/C++ projects, add libekc/include to the
compiler’s header search path, and link against the
static library libekc/build/libmmk_arch.a.

3. Invoke EKC API functions during kernel initialization
(usually in start.S) to configure memory permissions
for the .text, .data, and .bss segments.

By default, EKC grants full access only to the first mem-
ory page. Therefore, the memory permissions for these
segments must be configured within the first page during
initialization.

4. Replace existing memory management module (if
any). If your OS contains a memory management sys-
tem, decouple and remove it. All original function calls
should be replaced with EKC API equivalents. This may
involve non-trivial code refactoring.

• If your OS lacks a memory management module
(e.g., RTOS), this step can be skipped.

• If your OS uses a decoupled architecture (e.g., mi-
crokernel), integration should be relatively straight-
forward.

5. Integrate EKC with the trap handler. If your OS de-
fines a trap or interrupt handler, modify the instructions
that set the interrupt vector register (e.g., stvec on RISC-
V or VBAR on ARM) to route through the EKC API.

6. Compile your kernel to obtain the binary im-
age. If compilation succeeds, the output binary
can be placed at a designated location such as
payload/your_own_OS.img.

7. Run your kernel with EKC. Update the Makefile by
setting the PAYLOAD to the path of your kernel image.
You can then launch the system with EKC and utilize its
security features via the provided API.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

